RESEARCH ARTICLE Integrated single-cell analysis unveils diverging immune features of COVID-19, influenza, and other community-acquired pneumonia Alex R Schuurman1,2‡*, Tom DY Reijnders1,2‡, Anno Saris1,2, Ivan Ramirez Moral1,2, Michiel Schinkel1,2, Justin de Brabander1,2, Christine van Linge1,2, Louis Vermeulen3, Brendon P Scicluna1,4, W Joost Wiersinga1,2,5, Felipe A Vieira Braga3†, Tom van der Poll1,2,5†* 1Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands; 2Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands; 3Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands; 4Division of Infectious Diseases, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands; 5Department of Clinical Epidemiology, Biostatistics and Bioinformatics, *For correspondence: Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam,
[email protected] Netherlands (ARS);
[email protected] (TP) †These authors also contributed Abstract The exact immunopathophysiology of community-acquired pneumonia (CAP) caused equally to this work by SARS-CoV-2 (COVID-19) remains clouded by a general lack of relevant disease controls. The ‡ These authors also contributed scarcity of single-cell investigations in the broader population of patients with CAP renders it equally to this work difficult to distinguish immune features unique to COVID-19 from the common characteristics of a Competing interests: The dysregulated host response to pneumonia. We performed integrated single-cell transcriptomic and authors declare that no proteomic analyses in peripheral blood mononuclear cells from a matched cohort of eight patients competing interests exist.