Article Title

Total Page:16

File Type:pdf, Size:1020Kb

Article Title International In-house Counsel Journal Vol. 10, No. 38, Winter 2017, 1 Open Source Software: Compliance and Risk Mitigation SHILPI SNEHA In-house Counsel, India 1. Introduction – a brief history of where it all began The proprietorship of software was not a familiar concept in the 50’s and 60’s. The hardware and software were seen as an inseparable “system” and the cost for the operating system or any associated software used to be included in the price of the hardware. The human readable form of software i.e. source code were distributed along with the hardware to ensure that the user can make their own changes or modification for smooth running of the hardware. Users generally distributed the software, bug-fixes and any modification with each other freely as there were no strict licensing terms and even if there were few organisations who included license terms, enforcement of such terms was not usual. With the increase in many organisations and corporations who invested time and resources for development and betterment of software and the industry itself, software became the source of revenue opening a huge consumer market and protection of the software or its source code became the need for these corporations to survive beneficially. Upon being adequately famous and having dependable customer base, in the 1980s, AT&T stopped the free distribution and started charging for patches. One can also refer to the famous open-letter written by Bill Gates to the “hobbyist” (as the earlier free distributors or contributors were known as) in 1976 wherein he clearly mentioned the discontent on the free distribution of Microsoft’s proprietary software in as many words as possible. To a great extent it made sense that the people who have invested so much of resources and have taken up the development of software as a career should be able to reap the commercial benefits arising out of the software as a “reward”. It’s only but natural for every ideology to have a counter-ideology. While commercial organisations were more interested in protecting the benefits of their investment and hard work, the “hobbyist” or the “hackers” wanted the freedom to use, distribute, modify the software as per their own requirement which would also have included the option of fixing the bugs themselves or through a free or economical alternate. It is very much possible that a group of people like Richard Stallman would have faced similar problem, who wanted to fix a printer but could not because he was not allowed to access the source code of the software. Richard went on to launch GNU Project in 1983 and the first version of GNU GPL in 1989. The GNU Project was launched with the objective of developing an operating system and the other complimentary software required for functioning of a computer to be freely available to the users for use, modification, distribution and contribution. The first free operating system Linux came into being when Linus B. Trovald developed Linux kernel and released it under GNU GPL v2.0 in 1991. The intent of this paper is to understand the basics of open source, the evolution of industry from being OSS phobic to being OSS supportive through citation of example (and some important recent contributions to OSS by giant players in the industry), OSS as a beneficial business model and also to emphasize why it is important for every organisation to have OSS management and what risk mitigation steps can be taken for better protection. International In-house Counsel Journal ISSN 1754-0607 print/ISSN 1754-0607 online 2 Shilpi Sneha 2. Free Software, Open Source Software and Freeware: a general understanding a. Free Software: The Free Software Foundation was established by Richard Stallman. The philosophy of the foundation was that the software to be “free”, not of cost, but of restrictions. Hence, a free software does not necessarily mean that the programmer will not be able charge for a copy of the software but the programmer will have to give freedom to users to use the software for purposes such as studying of how the program works, freedom to modify the program, redistribute the copies of original program along with source code and redistribute the modification of the program to other users. It is critical to note that the programmer redistributing the program or the modification can charge the user for such redistribution or modification. However, such modification will have to be distributed under the same terms and conditions as the original software and it cannot be distributed under a proprietary or restrictive license terms and conditions. b. Open Source Software (“OSS”): The term OSS was coined in 1998 in order to come up with a term which is less ambiguous than “free” software and which makes it clear that the commercialisation of so called free software is not barred or restricted. It is important to clarify that while free and Open Source Software has been separately mentioned in this paper, the reason to do so is to historically document the usage of the different terms. The Free Software Foundation was founded earlier than Open Source Initiative (“OSI”) and hence the term Open Source Software is more recent than free software though they have overlapping philosophy. The reason for coining the new term was discomfort of people industry wide in using a confusing term “free” (which generally associated it to cost rather than freedom) and a slight change in the philosophy over a period of time. The term free software and Open Source Software are used inter-changeably and the official website of OSI enlists all the OSS that has been mentioned in this paper. Under the OSS licenses the users get same freedom to use, study, modify and redistribute the original software and modification with or without charge. Under the OSI initiative there are multiple licenses which are not copyleft and hence don’t require the modification or derivative work to be contributed back under the same terms and conditions. The programmer for the modification can choose to redistribute the modification under restrictive proprietary license terms and conditions. c. Freeware: The term Freeware refers to the software which are actually made available to the users “free” of cost but the governing licenses may be restrictive and thereby the access to source code might not have been allowed (let alone modification or redistribution of such modification). Some of the best example of such Freeware is Adobe and different kind of games that are available on the Android or iOS to the user free of cost though the source code is never made available to the user. 3. Types of Open Source Software: The OSI has its own license review process to ensure that the licenses comply with the objective of the initiative. Some of the famous licenses have been used across the industry has been mentioned below: a. GPL (General Public License), LGPL (Lesser General Public License) and AGPL (Affero General Public License): the copyleft or viral ones GNU GPL is a copyleft license whereby the freedom of use, modification or distribution is granted on the conditions that anything derived from the original software shall also be governed by the same terms and conditions. The preamble of the license reads as follows which clarifies the very objective and intent of releasing source code under these terms and conditions: Compliance and Risk Mitigation 3 “To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.” The object of the license is to ensure that all the users enjoy same rights and responsibilities and give back to the community rather than monopolising or commercialising the original software or any further contributions. GPL, however, does provide a linking exception, an example of which is GNU Classpath, which allows the proprietary software to be linked to code under GPL without being subject to the terms and conditions of original GPL terms and conditions. The wording of this exception may vary for each software libraries and few of the examples can be drawn from GNU Classpath, GNU Guile and release of Java SE and Java EE with same linking exception as GNU Classpath. While LGPL and AGPL are also extension of the same philosophy, LGPL is applicable for libraries and AGPL is applicable for software that could be shared over a network. LGPL does provide the similar linking exception as mentioned above for GPL with an additional requirement that reverse engineering of the library that is used must be allowed for debugging of the modification. b. MIT, BSD and Apache – the permissive ones: These are the more permissive licenses which allow the user to distribute the modification under proprietary or other licenses provided the user complies with the copyright notice and other applicable terms and conditions. The 4-clause version of the BSD was incompatible with GPL, however Modified (3- clasue) and Free (2-clause) BSD version are very much compatible with GPL. Apache v2.0 and GPL v3.0 are compatible with each other. Any other version of Apache and GPL are incompatible with each other. Incompatibility of different OSS terms with each other: The incompatibility of the licenses means that if different component of the software are licensed under different OSS or proprietary license, the inherent terms and conditions might conflict and it becomes unclear as to what terms and conditions will govern. For example: since GPL requires the contribution of any modification back to the public under same license terms, a proprietary license term obviously conflicts with the terms of GPL and it is needless to say that the whole proprietary software will become OSS in certain cases of combination of these two different software.
Recommended publications
  • Bringing GNU Emacs to Native Code
    Bringing GNU Emacs to Native Code Andrea Corallo Luca Nassi Nicola Manca [email protected] [email protected] [email protected] CNR-SPIN Genoa, Italy ABSTRACT such a long-standing project. Although this makes it didactic, some Emacs Lisp (Elisp) is the Lisp dialect used by the Emacs text editor limitations prevent the current implementation of Emacs Lisp to family. GNU Emacs can currently execute Elisp code either inter- be appealing for broader use. In this context, performance issues preted or byte-interpreted after it has been compiled to byte-code. represent the main bottleneck, which can be broken down in three In this work we discuss the implementation of an optimizing com- main sub-problems: piler approach for Elisp targeting native code. The native compiler • lack of true multi-threading support, employs the byte-compiler’s internal representation as input and • garbage collection speed, exploits libgccjit to achieve code generation using the GNU Com- • code execution speed. piler Collection (GCC) infrastructure. Generated executables are From now on we will focus on the last of these issues, which con- stored as binary files and can be loaded and unloaded dynamically. stitutes the topic of this work. Most of the functionality of the compiler is written in Elisp itself, The current implementation traditionally approaches the prob- including several optimization passes, paired with a C back-end lem of code execution speed in two ways: to interface with the GNU Emacs core and libgccjit. Though still a work in progress, our implementation is able to bootstrap a func- • Implementing a large number of performance-sensitive prim- tional Emacs and compile all lexically scoped Elisp files, including itive functions (also known as subr) in C.
    [Show full text]
  • Wisp: Whitespace to Lisp
    wisp: Whitespace to Lisp Dr. Arne Babenhauserheide <2013-03-26 Di> » I love the syntax of Python, but crave the simplicity and power of Lisp.« display "Hello World!" 7! (display "Hello World!") define : factorial n (define (factorial n) if : zero? n 7! (if (zero? n) . 1 1 * n : factorial {n - 1} (* n (factorial {n - 1})))) Wisp basics • Wisp turns indentation into lisp expressions. • Why Wisp? • Get it – from its Mercurial repository: hg clone https://hg.sr.ht/~arnebab/wisp – Or via GNU Guix: guix install guile guile-wisp – Or via the package guile-wisp-hg for Arch Linux. – Or via ./configure; make install from the releases. • See more examples and tests. 1 »ArneBab’s alternate sexp syntax is best I’ve seen; pythonesque, hides parens but keeps power« — Christopher Webber in twitter, in identi.ca and in their blog: Wisp: Lisp, minus the parentheses ~ wow ~ »Wisp allows people to see code how Lispers perceive it. Its structure becomes apparent.« — Ricardo Wurmus in IRC, paraphrasing the wisp statement from his talk at FOSDEM 2019 about Guix for reproducible science in HPC. ^¨ Yay! ^¨ with (open-file "with.w" "r") as port format #t "~a\n" : read port Familiar with-statement in 25 lines. 2 ↓ skip updates and releases ↓ Update (2021-05-21): If you use GNU Guix, you can get an instant wisp shell with a single command: guix environment --ad-hoc guile guile-wisp -- wisp That’s the guix wisp insta-REPL ^¨ $ guix environment --ad-hoc guile guile-wisp -- wisp GNU Guile 3.0.7 Copyright (C) 1995-2021 Free Software Foundation, Inc.
    [Show full text]
  • A Reader Framework for Guile for Guile-Reader 0.6.2
    A Reader Framework for Guile for Guile-Reader 0.6.2 Ludovic Court`es Edition 0.6.2 8 March 2017 This file documents Guile-Reader. Copyright c 2005, 2006, 2007, 2008, 2009, 2012, 2015, 2017 Ludovic Court`es Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the con- ditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another lan- guage, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. i Table of Contents A Reader Framework for Guile ................ 1 1 Introduction............................... 3 2 Overview .................................. 5 3 Quick Start................................ 7 4 API Reference............................. 9 4.1 Token Readers .............................................. 9 4.1.1 Defining a New Token Reader............................ 9 4.1.2 Token Reader Calling Convention ........................ 9 4.1.3 Invoking a Reader from a Token Reader ................. 10 4.1.4 Token Reader Library .................................. 11 4.1.5 Limitations............................................ 16 4.1.5.1 Token Delimiters .................................
    [Show full text]
  • Functional Package Management with Guix
    Functional Package Management with Guix Ludovic Courtès Bordeaux, France [email protected] ABSTRACT 1. INTRODUCTION We describe the design and implementation of GNU Guix, a GNU Guix1 is a purely functional package manager for the purely functional package manager designed to support a com- GNU system [20], and in particular GNU/Linux. Pack- plete GNU/Linux distribution. Guix supports transactional age management consists in all the activities that relate upgrades and roll-backs, unprivileged package management, to building packages from source, honoring the build-time per-user profiles, and garbage collection. It builds upon the and run-time dependencies on packages, installing, removing, low-level build and deployment layer of the Nix package man- and upgrading packages in user environments. In addition ager. Guix uses Scheme as its programming interface. In to these standard features, Guix supports transactional up- particular, we devise an embedded domain-specific language grades and roll-backs, unprivileged package management, (EDSL) to describe and compose packages. We demonstrate per-user profiles, and garbage collection. Guix comes with a how it allows us to benefit from the host general-purpose distribution of user-land free software packages. programming language while not compromising on expres- siveness. Second, we show the use of Scheme to write build Guix seeks to empower users in several ways: by offering the programs, leading to a \two-tier" programming system. uncommon features listed above, by providing the tools that allow users to formally correlate a binary package and the Categories and Subject Descriptors \recipes" and source code that led to it|furthering the spirit D.4.5 [Operating Systems]: Reliability; D.4.5 [Operating of the GNU General Public License|, by allowing them to Systems]: System Programs and Utilities; D.1.1 [Software]: customize the distribution, and by lowering the barrier to Applicative (Functional) Programming entry in distribution development.
    [Show full text]
  • Weak References Data Structures and Implementation
    Weak References Data Structures and Implementation Bruno Haible ILOG GmbH 24 April 2005 What is a Weak Pointer? ● Garbage collection preserves all objects that are reachable from the root set. ● A weak pointer holds its object without causing it to be reachable. What is a Weak Hashtable? ● A weak hash-table holds its key-value pairs without causing them to be reachable. ● Four kinds: – :key – :value – :key-and-value – :key-or-value A Strong Feature ● Adding extra info to sealed objects. ● Memoizing prior results. ● Uniquification. ● Hash consing. ● Avoiding attach/detach protocols. ● Global garbage collection. Caveats ● Extra time spent in GC (for W weak pointers: – O(W²) in some implementations, – O(W) in other implementations) Weak Datastructures ● Weak pointer ● Weak “and” relation ● Weak “or” relation ● Weak association (= weak mapping) ● Weak “and” mapping ● Weak “or” mapping ● Weak association list ● Weak hash-table Primitive Weak Datastructures ● Weak pointers ● Weak :key mappings ● Weak hash-tables The others can be emulated. Levels of Support 1.Support for weak pointers. 2.Support for weak :key mappings or weak hash-tables, with “key not in value” restriction. 3.Support for weak :key mappings or weak hash-tables, without restriction. 4.Scalable support for weak :key mappings or weak hash-tables. Implementations of Level 1 ● Common Lisp: GNU clisp 2.33.80, OpenMCL 0.14.1, Allegro CL 6.2, LispWorks 4.3, Corman Lisp 1.1, CMUCL 19a, SBCL 0.8.20 ● Scheme: GNU guile 1.7.1, MIT Scheme 7.7.1, BBN Scheme, MzScheme 205, Scheme48 ● Other
    [Show full text]
  • GNU Guix Reference Manual Using the GNU Guix Functional Package Manager
    GNU Guix Reference Manual Using the GNU Guix Functional Package Manager The GNU Guix Developers Edition 34cf1f4 29 September 2021 Copyright c 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021 Ludovic Court`es Copyright c 2013, 2014, 2016 Andreas Enge Copyright c 2013 Nikita Karetnikov Copyright c 2014, 2015, 2016 Alex Kost Copyright c 2015, 2016 Mathieu Lirzin Copyright c 2014 Pierre-Antoine Rault Copyright c 2015 Taylan Ulrich Bayırlı/Kammer Copyright c 2015, 2016, 2017, 2019, 2020, 2021 Leo Famulari Copyright c 2015, 2016, 2017, 2018, 2019, 2020 Ricardo Wurmus Copyright c 2016 Ben Woodcroft Copyright c 2016, 2017, 2018, 2021 Chris Marusich Copyright c 2016, 2017, 2018, 2019, 2020, 2021 Efraim Flashner Copyright c 2016 John Darrington Copyright c 2016, 2017 Nikita Gillmann Copyright c 2016, 2017, 2018, 2019, 2020 Jan Nieuwenhuizen Copyright c 2016, 2017, 2018, 2019, 2020, 2021 Julien Lepiller Copyright c 2016 Alex ter Weele Copyright c 2016, 2017, 2018, 2019, 2020, 2021 Christopher Baines Copyright c 2017, 2018, 2019 Cl´ement Lassieur Copyright c 2017, 2018, 2020, 2021 Mathieu Othacehe Copyright c 2017 Federico Beffa Copyright c 2017, 2018 Carlo Zancanaro Copyright c 2017 Thomas Danckaert Copyright c 2017 humanitiesNerd Copyright c 2017, 2021 Christine Lemmer-Webber Copyright c 2017, 2018, 2019, 2020, 2021 Marius Bakke Copyright c 2017, 2019, 2020 Hartmut Goebel Copyright c 2017, 2019, 2020, 2021 Maxim Cournoyer Copyright c 2017, 2018, 2019, 2020, 2021 Tobias Geerinckx-Rice Copyright c 2017 George Clemmer Copyright c 2017 Andy Wingo Copyright c 2017, 2018, 2019, 2020 Arun Isaac Copyright c 2017 nee Copyright c 2018 Rutger Helling Copyright c 2018, 2021 Oleg Pykhalov Copyright c 2018 Mike Gerwitz Copyright c 2018 Pierre-Antoine Rouby Copyright c 2018, 2019 G´abor Boskovits Copyright c 2018, 2019, 2020 Florian Pelz Copyright c 2018 Laura Lazzati Copyright c 2018 Alex Vong Copyright c 2019 Josh Holland Copyright c 2019, 2020 Diego Nicola Barbato Copyright c 2019 Ivan Petkov Copyright c 2019 Jakob L.
    [Show full text]
  • Proceedings of ELS 2013 6Th European Lisp Symposium June 3 – 4 2013 Madrid, Spain
    Proceedings of ELS 2013 6th European Lisp Symposium June 3 – 4 2013 Madrid, Spain Organization Programme Chairs • Christian Queinnec, UPMC, France • Manuel Serrano, INRIA, France Local Chair • Juan José Garcia-Ripoll, IFF, Madrid Programme Committee • Pascal Costanza, Intel, Belgium • Ludovic Courtès, Inria, France • Theo D’Hondt, Vrije Universiteit Brussel, Belgium • Erick Gallesio, University of Nice-Sophia Antipolis • Florian Loitsch, Google, Denmark • Kurt Noermark, Aalborg University, Denmark • Christian Queinnec, UPMC, France • Olin Shivers, Northeastern University, USA • Manuel Serrano, Inria, France • Didier Verna, Epita Research Lab, France ELS 2013 iii Sponsors EPITA 14-16 rue Voltaire FR-94276 Le Kremlin-Bicêtre CEDEX France www.epita.fr LispWorks Ltd. St John’s Innovation Centre Cowley Road Cambridge CB4 0WS England www.lispworks.com Franz Inc. 2201 Broadway, Suite 715 Oakland, CA 94612 www.franz.com Clozure Associates Boston, MA 02205-5071 USA www.clozure.com INRIA Domaine de Voluceau Rocquencourt - BP 105 78153 Le Chesnay Cedex France www.inria.fr Association of Lisp Users USA www.alu.org iv ELS 2013 Contents Organization iii Programme Chairs . iii Local Chair . iii Programme Committee . iii Sponsors . iv Invited Talks 1 Asynchronous Programming in Dart – Florian Loitsch ...................1 Lisp and Music Research – Gérard Assayag ..........................1 Streams-Based, Multi-Threaded News Classification – Jason Cornez ...........1 Session I 3 Functional Package Management with Guix – Ludovic Courtès ..............4 Data-Transformer: an Example of Data-Centered Toolset – Mikhail Raskin ........ 15 The Leonardo System and Software Individuals – Erik Sandewall ............. 18 Session II 25 Tutorial: Typed Racket – Sam Tobin-Hochstadt ........................ 26 Platforms for Games and Evaluation of Lisp Code – Arturo de Salabert .........
    [Show full text]
  • Functional Package Management with Guix Ludovic Courtès
    Functional Package Management with Guix Ludovic Courtès To cite this version: Ludovic Courtès. Functional Package Management with Guix. European Lisp Symposium, Jun 2013, Madrid, Spain. hal-00824004 HAL Id: hal-00824004 https://hal.inria.fr/hal-00824004 Submitted on 20 May 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Functional Package Management with Guix Ludovic Courtès Bordeaux, France [email protected] ABSTRACT 1. INTRODUCTION We describe the design and implementation of GNU Guix, a GNU Guix1 is a purely functional package manager for the purely functional package manager designed to support a com- GNU system [20], and in particular GNU/Linux. Pack- plete GNU/Linux distribution. Guix supports transactional age management consists in all the activities that relate upgrades and roll-backs, unprivileged package management, to building packages from source, honoring the build-time per-user profiles, and garbage collection. It builds upon the and run-time dependencies on packages, installing, removing, low-level build and deployment layer of the Nix package man- and upgrading packages in user environments. In addition ager. Guix uses Scheme as its programming interface. In to these standard features, Guix supports transactional up- particular, we devise an embedded domain-specific language grades and roll-backs, unprivileged package management, (EDSL) to describe and compose packages.
    [Show full text]
  • Principles of Autonomy and Decision Making Project Introduction
    Principles of Autonomy and Decision Making Project This text is taken from the GNU Robots manual, written by Jim Hall. Introduction GNU Robots is a game/diversion where you construct a program for a little robot, then set him loose and watch him explore a world on his own. The robot program is written in Scheme, and is implemented using GNU Guile. The whole goal of GNU Robots is to get the highest score that you can. Robot actions But the question you’re probably waiting to have answered is: ”What can I make the little robot do?” That’s the list of ‘robot-*’ functions. Here is a table of all the GNU Robots functions, called primitives, that you can use in your robot program. Each primitive has an energy cost associated with it. Note that some primitives will take an argument, and some will not. If an argument is a number, I’ll print ‘N’ after the function name. If the argument is a GNU Robots ”thing” then I’ll print ‘TH’ after the function name. (Note that number arguments are just numbers, but “thing” arguments are strings enclosed in quotation marks.) If the primitive does not take an argument, I will print nothing. 1 PRIMITIVE ENERGY ACTION robot-turn N -2 Turns the robot N spaces to the right or left. If ‘N’ is a positive number, the robot turns to the right. If ‘N’ is negative, the robot turns to the left. Every turn has a cost of -2, so if you ‘robot-turn 2’ then the cost is -4 to your energy.
    [Show full text]
  • List of Compilers 1 List of Compilers
    List of compilers 1 List of compilers This page is intended to list all current compilers, compiler generators, interpreters, translators, tool foundations, etc. Ada compilers This list is incomplete; you can help by expanding it [1]. Compiler Author Windows Unix-like Other OSs License type IDE? [2] Aonix Object Ada Atego Yes Yes Yes Proprietary Eclipse GCC GNAT GNU Project Yes Yes No GPL GPS, Eclipse [3] Irvine Compiler Irvine Compiler Corporation Yes Proprietary No [4] IBM Rational Apex IBM Yes Yes Yes Proprietary Yes [5] A# Yes Yes GPL No ALGOL compilers This list is incomplete; you can help by expanding it [1]. Compiler Author Windows Unix-like Other OSs License type IDE? ALGOL 60 RHA (Minisystems) Ltd No No DOS, CP/M Free for personal use No ALGOL 68G (Genie) Marcel van der Veer Yes Yes Various GPL No Persistent S-algol Paul Cockshott Yes No DOS Copyright only Yes BASIC compilers This list is incomplete; you can help by expanding it [1]. Compiler Author Windows Unix-like Other OSs License type IDE? [6] BaCon Peter van Eerten No Yes ? Open Source Yes BAIL Studio 403 No Yes No Open Source No BBC Basic for Richard T Russel [7] Yes No No Shareware Yes Windows BlitzMax Blitz Research Yes Yes No Proprietary Yes Chipmunk Basic Ronald H. Nicholson, Jr. Yes Yes Yes Freeware Open [8] CoolBasic Spywave Yes No No Freeware Yes DarkBASIC The Game Creators Yes No No Proprietary Yes [9] DoyleSoft BASIC DoyleSoft Yes No No Open Source Yes FreeBASIC FreeBASIC Yes Yes DOS GPL No Development Team Gambas Benoît Minisini No Yes No GPL Yes [10] Dream Design Linux, OSX, iOS, WinCE, Android, GLBasic Yes Yes Proprietary Yes Entertainment WebOS, Pandora List of compilers 2 [11] Just BASIC Shoptalk Systems Yes No No Freeware Yes [12] KBasic KBasic Software Yes Yes No Open source Yes Liberty BASIC Shoptalk Systems Yes No No Proprietary Yes [13] [14] Creative Maximite MMBasic Geoff Graham Yes No Maximite,PIC32 Commons EDIT [15] NBasic SylvaWare Yes No No Freeware No PowerBASIC PowerBASIC, Inc.
    [Show full text]
  • A Survey of GNU Guile Software
    A Survey of GNU Guile Software Erik Edrosa March 23, 2019 Erik Edrosa A Survey of GNU Guile Software March 23, 2019 1 / 31 Introduction About me GNU Guile user since 2014 Maintainer of Guile-CommonMark and Guile-Git C++ Software Developer from Miami, Florida Erik Edrosa A Survey of GNU Guile Software March 23, 2019 2 / 31 GNU Guile What is GNU Guile? GNU Ubiquitous Intelligent Language for Extensions The official extension language of the GNU project. Implementation of the Scheme programming language. Erik Edrosa A Survey of GNU Guile Software March 23, 2019 3 / 31 GNU Guile Origins of GNU Guile GNU Hackers were inspired by the customability and extendability of GNU Emacs They wanted to bring this to the rest of GNU Decided to use scheme, because it is simple and clean Should support multiple languages like Emacs Lisp and Tcl Erik Edrosa A Survey of GNU Guile Software March 23, 2019 4 / 31 Customizing and Extending Software Definitions Customizable easily alter the behavior of the software. Extensible can go beyond simple customizations and create new ways to use the software. Erik Edrosa A Survey of GNU Guile Software March 23, 2019 5 / 31 GNU Emacs GNU Emacs An extensible, customizable, free/libre text editor Also a calendar, email client, package manager, web browser, . and more! Find out more at https://www.gnu.org/s/emacs Erik Edrosa A Survey of GNU Guile Software March 23, 2019 6 / 31 GNU Emacs Extending Emacs with Commands Uses a command loop (defun hello (name) First reads a key sequence "Greets a person" Key sequence is translated
    [Show full text]
  • Technical Report
    Technical Report Proceedings of the 2020 Scheme and Functional Programming Workshop Edited by Baptiste Saleil and Michael D. Adams arXiv:2101.06759v1 [cs.PL] 17 Jan 2021 January 2021 Computer Science and Engineering technical reports published by University of Michigan are available at: https:// cse.engin.umich.edu/ research/ technical-reports-publications/ Preface This report aggregates the papers presented at the twenty-first annual Scheme and Func- tional Programming Workshop, hosted on August 28th, 2020, online and co-located with the twenty-fifth International Conference on Functional Programming. The Scheme and Func- tional Programming Workshop is held every year to provide an opportunity for researchers and practitioners using Scheme and related functional programming languages like Racket, Clojure, and Lisp, to share research findings and discuss the future of the Scheme program- ming language. Seven papers and three lightning talks were submitted to the workshop, and each submission was reviewed by three members of the program committee. After deliber- ation, four papers and three lightning talks were accepted to the workshop. In addition to the four papers and three lightning talks presented, • Martin Henz and Tobias Wrigstad gave an invited keynote speech entitled SICP JS: Ketchup on Caviar? • Bohdan Khomtchouk and Jonah Fleishhacker gave an invited keynote speech entitled 21st Century Lisp in Academic Research and Pedagogy. Thank you to all the presenters, panelists, participants, and members of the program com- mittee. Program
    [Show full text]