Quantitative Line Assignment in Optical Emission Spectroscopy
Total Page:16
File Type:pdf, Size:1020Kb
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2018 Quantitative Line Assignment in Optical Emission Spectroscopy Jessica Chappell University of Central Florida Part of the Chemistry Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Chappell, Jessica, "Quantitative Line Assignment in Optical Emission Spectroscopy" (2018). Electronic Theses and Dissertations, 2004-2019. 6387. https://stars.library.ucf.edu/etd/6387 QUANTITATIVE LINE ASSIGMENT IN OPTICAL EMISSION SPECTROSCOPY by JESSICA NICOLE CHAPPELL B.S Southwest Baptist University, 2013 M.S. University of Central Florida, 2017 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the College of Sciences at the University of Central Florida Orlando, Florida Summer Term 2018 Major Professor: Matthieu Baudelet © 2018 Jessica Chappell ii ABSTRACT Quantitative elemental analysis using Optical Emission Spectroscopy (OES) starts with a high level of confidence in spectral line assignment from reference databases. Spectral interferences caused by instrumental and line broadening decrease the resolution of OES spectra creating uncertainty in the elemental profile of a sample for the first time. An approach has been developed to quantify spectral interferences for individual line assignment in OES. The algorithm calculates a statistical interference factor (SIF) that combines a physical understanding of plasma emission with a Bayesian analysis of the OES spectrum. It can be used on a single optical spectrum and still address individual lines. Contrary to current methods, quantification of the uncertainty in elemental profiles of OES, leads to more accurate results, higher reliability and validation of the method. The SIF algorithm was evaluated for Laser-Induced Breakdown Spectroscopy (LIBS) on samples with increasing complexity: from silicon to nickel spiked alumina to NIST standards (600 glass series and nickel-chromium alloy). The influence of the user’s knowledge of the sample composition was studied and showed that for the majority of spectral lines this information is not changing the line assignment for simple compositions. Nonetheless, the amount of interference could change with this information, as expected. Variance of the SIF results for NIST glass standard was evaluated by the chi-square hypothesis test of variance showing that the results of the SIF algorithm are very reproducible. iii To my family iv ACKNOWLEDGMENTS To my mom and dad, I want to thank you so much for the wisdom and guidance that you provided which has kept me focused on my pursuit of higher education. I wouldn’t have been able to continue with this path if you hadn’t been there for me every step of the way. To my brothers, thank you for supporting me and making me laugh when times were stressful. A special thanks to my grandma Chappell who passed my first semester of graduate school. I wouldn’t be who I am today and continue to be without your love and spiritual guidance. I would like to thank my research advisor, Dr. Baudelet, for his guidance throughout my graduate studies. I would also like to thank Dr. Sigman for all of his help and encouraging words throughout my time at the National Center for Forensic Science (NCFS). For my fellow graduate students at NCFS, of which there are too many to name, I cannot express how thankful I am for living life with you. To Danielle and Brian thank you for your friendship and counsel that you have provided from driving to pick me up when I wasn’t well to watching movies together. v TABLE OF CONTENTS LIST OF FIGURES ....................................................................................................................... ix LIST OF TABLES ........................................................................................................................ xii CHAPTER 1: INTRODUCTION ................................................................................................... 1 CHAPTER 2: BACKGROUND ..................................................................................................... 4 Inductively-Coupled Plasma Optical Emission Spectroscopy .................................................... 6 Laser-Induced Breakdown Spectroscopy ................................................................................... 8 Optical Emission Spectroscopy Instrumentation ...................................................................... 11 Inductively-Coupled Plasma Optical Emission Spectroscopy .............................................. 11 Laser-Induced Breakdown Spectroscopy Instrumentation ................................................... 13 Spectral Line Broadening and Spectral Profile ......................................................................... 15 CHAPTER 3: CHARACTERIZATION OF PLASMA ............................................................... 22 Physics of Plasma ..................................................................................................................... 22 Thermodynamic Equilibrium (TE) ....................................................................................... 22 Local Thermodynamic Equilibrium (LTE) ........................................................................... 23 Maxwell Velocity Distribution Function .............................................................................. 24 Boltzmann Population Distribution ...................................................................................... 24 Saha-Eggert Ionization-Recombination ................................................................................ 27 Planck’s Law ......................................................................................................................... 28 vi Plasma Temperature and Electron Density Calculation ........................................................... 30 Electron Density.................................................................................................................... 35 CHAPTER 4: UNCERTAINTIES AND THEIR MEASUREMENTS IN OES .......................... 36 Forensic Analysis Need ............................................................................................................ 36 Types of Spectral Interferences ................................................................................................ 36 Spectral Interference Uncertainty Importance .......................................................................... 38 Approaches to Spectral Interference Uncertainty ..................................................................... 38 Line Coincidence Tables....................................................................................................... 38 Calibration............................................................................................................................. 40 Calibration-Free Approach ................................................................................................... 42 Chemometrics ....................................................................................................................... 42 CHAPTER 5: STATISTICAL INTERFERENCE FACTOR....................................................... 46 Algorithm Development ........................................................................................................... 46 Sample/Spectral Data ............................................................................................................ 48 Peak Detection/Peak Fitting .................................................................................................. 49 Statistical Interference Factor (SIF) ...................................................................................... 56 Matching Factor .................................................................................................................... 60 Bayesian Inference .................................................................................................................... 70 Optimum Representation of the Experimental Spectrum ..................................................... 72 vii Bayesian Information Criterion ............................................................................................ 76 CHAPTER 6: QUANTIFICATION OF SPECTRAL INTERFERENCES IN LIBS ................. 95 LIBS Instrumentation................................................................................................................ 95 NIST SRM 600 Glass Series .................................................................................................... 95 NIST SRM 610 Glass ........................................................................................................... 96 NIST SRM 614 Glass ......................................................................................................... 126 NIST SRM 616 Glass ......................................................................................................... 139 Comparison of Major, Minor, and Trace Elements in SRM 600 Glass Series ................... 152 NIST SRM 1243 Nickel