Multimodel Assessment of Water Scarcity Under Climate Change

Total Page:16

File Type:pdf, Size:1020Kb

Multimodel Assessment of Water Scarcity Under Climate Change Multimodel assessment of water scarcity under SPECIAL FEATURE climate change Jacob Schewea,1, Jens Heinkea,b, Dieter Gertena, Ingjerd Haddelandc, Nigel W. Arnelld, Douglas B. Clarke, Rutger Dankersf, Stephanie Eisnerg, Balázs M. Feketeh, Felipe J. Colón-Gonzálezi, Simon N. Goslingj, Hyungjun Kimk, Xingcai Liul, Yoshimitsu Masakim, Felix T. Portmannn,o, Yusuke Satohp, Tobias Stackeq, Qiuhong Tangl, Yoshihide Wadar, Dominik Wissers, Torsten Albrechta, Katja Frielera, Franziska Pionteka, Lila Warszawskia, and Pavel Kabatt,u aPotsdam Institute for Climate Impact Research, 14412 Potsdam, Germany; bInternational Livestock Research Institute, Nairobi, Kenya; cNorwegian Water Resources and Energy Directorate, N-0301 Oslo, Norway; dWalker Institute for Climate System Research, University of Reading, Reading RG6 6AR, United Kingdom; eCentre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom; fMet Office Hadley Centre, Exeter EX1 3PB, United Kingdom; gCenter for Environmental Systems Research, University of Kassel, 34109 Kassel, Germany; hCivil Engineering Department, The City College of New York, New York, NY 10031; iAbdus Salam International Centre for Theoretical Physics, I-34151Trieste, Italy; jSchool of Geography, University of Nottingham, Nottingham NG7 2RD, United Kingdom; kInstitute of Industrial Science , The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan; pDepartment of Civil Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan; lInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; mCenter for Global Environmental Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan; nLOEWE Biodiversity and Climate Research Centre and Senckenberg Research Institute and Natural History Museum, 60325 Frankfurt am Main, Germany; oInstitute of Physical Geography, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; qMax Planck Institute for Meteorology, 20146 Hamburg, Germany; rDepartment of Physical Geography, Utrecht University, 3584 CS Utrecht, The Netherlands; sCenter for Development Research, University of Bonn, 53113 Bonn, Germany; tInternational Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria; and uWageningen University and Research Centre, 6708, Wageningen, The Netherlands Edited by Hans Joachim Schellnhuber, Potsdam Institute for Climate Impact Research, Potsdam, Germany, and approved August 13, 2013 (received for review January 31, 2013) Water scarcity severely impairs food security and economic pros- resources already constrains development and societal well-being perity in many countries today. Expected future population changes in many countries (4, 5), the expected growth of global population SCIENCE will, in many countries as well as globally, increase the pressure on over the coming decades, together with growing economic pros- SUSTAINABILITY available water resources. On the supply side, renewable water perity, will increase water demand and thus aggravate these resources will be affected by projected changes in precipitation problems (6–8). patterns, temperature, and other climate variables. Here we use Climate change poses an additional threat to water security a large ensemble of global hydrological models (GHMs) forced by because changes in precipitation and other climatic variables five global climate models and the latest greenhouse-gas concen- may lead to significant changes in water supply in many regions tration scenarios (Representative Concentration Pathways) to syn- (6–11). The effect of climate change on water resources is, thesize the current knowledge about climate change impacts on however, uncertain for a number of reasons. Climate model water resources. We show that climate change is likely to exacer- projections, although rather consistent in terms of global average bate regional and global water scarcity considerably. In particular, changes, disagree on the magnitude, and in many cases even the the ensemble average projects that a global warming of 2 °C above sign, of change at a regional scale, in particular when it comes to present (approximately 2.7 °C above preindustrial) will confront an precipitation patterns (12). In addition, the way in which pre- additional approximate 15% of the global population with a severe cipitation changes translate into changes in hydrological varia- decrease in water resources and will increase the number of people bles such as surface or subsurface runoff and river discharge (i.e., living under absolute water scarcity (<500 m3 per capita per year) by runoff accumulated along the river network), and thus in re- another 40% (according to some models, more than 100%) com- newable water resources, depends on many biophysical charac- pared with the effect of population growth alone. For some indica- teristics of the affected region (e.g., orography, vegetation, and tors of moderate impacts, the steepest increase is seen between the soil properties) and is the subject of hydrological models, which present day and 2 °C, whereas indicators of very severe impacts in- represent a second level of uncertainty (11, 13). crease unabated beyond 2 °C. At the same time, the study highlights In the framework of the Inter-Sectoral Impact Model In- large uncertainties associated with these estimates, with both global tercomparison Project [ISI-MIP; Warszawski et al. (14) in this climate models and GHMs contributing to the spread. GHM uncer- issue of PNAS] a set of nine global hydrological models, one tainty is particularly dominant in many regions affected by declining global land-surface model, and one dynamic global vegetation water resources, suggesting a high potential for improved water model [here summarized as global hydrological models (GHMs); resource projections through hydrological model development. Materials and Methods] has been applied using bias-corrected forcing from five different global climate models (GCMs) under climate impacts | hydrological modeling | Inter-Sectoral Impact Model the newly developed Representative Concentration Pathways Intercomparison Project (RCPs). The purpose is to explore the associated uncertainties and to synthesize the current state of knowledge about the reshwater is one of the most vital natural resources of the impact of climate change on renewable water resources at Fplanet. The quantities that humans need for drinking and the global scale. In this paper we investigate the multimodel sanitation are relatively small, and the fact that these basic needs are not satisfied for many people today is primarily a matter of access to, and quality of, available water resources (1). Much Author contributions: J.S., K.F., F.P., L.W., and P.K. designed research; J.S., J.H., D.G., I.H., N.A., D.B.C., R.D., S.E., B.M.F., F.J.C.-G., S.N.G., H.K., X.L., Y.M., F.T.P., Y.S., T.S., Q.T., Y.W., larger quantities of water are required for many other purposes, and D.W. performed research; J.S. and T.A. analyzed data; and J.S. wrote the paper. most importantly irrigated agriculture, but also for industrial use, The authors declare no conflict of interest. in particular for hydropower and the cooling of thermoelectric This article is a PNAS Direct Submission. fi power plants (2, 3). These activities critically depend on a suf - 1To whom correspondence should be addressed. E-mail: [email protected]. cient amount of freshwater that can be withdrawn from rivers, This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. lakes, and groundwater aquifers. Whereas scarcity of freshwater 1073/pnas.1222460110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1222460110 PNAS Early Edition | 1of6 Downloaded by guest on October 2, 2021 ensemble projections and the associated spread for changes in a relatively high level of agreement across the multimodel en- annual discharge—taken here as a first-order measure of the semble on the sign of change indicates high confidence. Most of water resources available to humans. We then reconcile these these patterns are consistent with previous studies (8, 11, 17, 18), hydrological changes with global population patterns to estimate but there are also some differences. For example, ensemble pro- how many people will be living in areas affected by a given jections using the previous generation of GCMs and climate sce- change in water resources. Finally, we apply a commonly used narios found a robust runoff increase in southeastern South measure of water scarcity to estimate the percentage of the America (19, 20), where we find no clear trend, or partly even world’s population living in water-scarce countries and to a drying trend. Whereas those latter studies used larger GCM quantify the contributions of both climate change and population ensembles, we apply an unprecedented number of GHMs as well as change to the change in water scarcity. Results are presented as the new RCP climate forcing. At 3 °C of global mean warming, the a function of global mean warming above the present day to ac- pattern of change is similar to that at 2 °C, although the changes are count for the relative independence of regional temperature, enhanced in many regions, and new robust trends emerge in some precipitation, and runoff changes of the rate of warming (15, 16) regions (most notably a strong negative trend in Mesoamerica; SI and to allow for systematic comparison of climate change impacts Appendix,Fig.S1). across scenarios and sectors. In other
Recommended publications
  • Coping with Water Scarcity: What Role for Biotechnologies?
    ISSN 1729-0554 LAND AND WATER DISCUSSION 7 PAPER LAND AND WATER DISCUSSION PAPER 7 Coping with water scarcity: What role for biotechnologies? As one of its initiatives to mark World Water Day 2007, whose theme was "Coping with water scarcity", FAO organized a moderated e-mail conference entitled "Coping with water scarcity in developing countries: What role for agricultural biotechnologies?". Its main focus was on the use of biotechnologies to increase the efficiency of water use in agriculture, while a secondary focus was on two specific water-related applications of micro-organisms, in wastewater treatment and in inoculation of crops and forest trees with mycorrhizal fungi. This publication brings together the background paper and the summary report from the e-mail conference. Coping with water scarcity: What role for biotechnologies? ISBN 978-92-5-106150-3 ISSN 1729-0554 9 7 8 9 2 5 1 0 6 1 5 0 3 TC/M/I0487E/1/11.08/2000 LAND AND WATER Coping with Water DISCUSSION PAPER Scarcity: What Role for 7 Biotechnologies? By John Ruane FAO Working Group on Biotechnology Rome, Italy Andrea Sonnino FAO Research and Extension Division Rome, Italy Pasquale Steduto FAO Land and Water Division Rome, Italy and Christine Deane Faculty of Law University of Technology, Sydney Australia FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2008 The views expressed in this publication are those of the authors and do not necessarily reflect the views of the Food and Agriculture Organization of the United Nations. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Universal Access by 2030: Will There Be Enough Water?
    Briefing note Universal access by 2030: will there be enough water? ‘Running out’ of water is not the main problem The water scarcity at the heart of today’s global water crisis is often rooted in power, poverty, inequality and poor management (known as socio-economic water scarcity), rather than because demand for water exceeds supply (known as physical water scarcity).1 In the vast majority of cases the sector has been unable to extend access to water even where supplies are plentiful, which indicates the enormity of these socio- economic challenges. Although physical scarcity is not the main issue, it is increasingly having an impact. Pressure must be maintained on governments to fulfil their obligations to deliver WASH to all their citizens through increased access, but the sector must also recognise the growing threat that physical water scarcity poses to the goal of universal access to WASH by 2030. Governments and service providers must be prepared for the compounding effect that emerging physical water scarcity will have on existing socio- economic challenges. Physical water scarcity, such as that experienced during drought, will compound existing socio-economic challenges associated with extending access to WASH. Johnson/National Geographic Johnson/National Lynn Water resources are increasingly over-exploited Accurately measuring water resources is difficult – particularly as the physical availability of water varies enormously both geographically and throughout the year. According to recent scarcity assessments, at least 2.7 billion people live in basins where water scarcity is severe for at least one month each year.2 Water scarcity correlates strongly with increasing demand (e.g.
    [Show full text]
  • Water Ecosystem Services and Poverty Reduction Under Climate Change: Water Governance Literature Assessment
    Assessing poverty implications of climate change: impacts on water ecosystems Rob Hope Report contributing to the scoping exercise managed by IIED to help develop a DFID research programme on water ecosystems and poverty reduction under climate change 1. Executive Summary Climate change poses serious threats to achieving global targets to reduce poverty. The implications for the poor are of particular concern due to their vulnerability from heightened exposure to increased climate variability and extreme events. Too much or too little water has dramatic and enduring impacts on the poor from immediate and lifecycle impacts of drought or flood to shifts in rainfall patterns. A conceptual framework of the linkages between drivers of environmental change, water ecosystems and poverty is illustrated to assist identification of research gaps and emerging priorities from the recent literature. Seven priority areas emerge, including: water rights, strengthening adaptive capacity, water for food, managing water ecosystems, ecosystems as water infrastructure, investing in water, and water and growth. Three key messages appear of note. First, more coherent policy is required to harness the potential of water as a unifying approach for development, growth and ecosystem integrity. Second, there is a pressing need for sound analysis of what actually works for objective and accountable development policy that responsibly meets the needs of the poor and threatened ecosystems. Third, climate change may offer an unexpected political window for change and renewal across sectors, such as health, education, agriculture, energy, markets and technology. Three themes with associated sub-themes are identified to inform a new research agenda on reducing poverty from climate change impacts on freshwater ecosystems: 1) Strengthening adaptive capacity; 2) Building bridges to the poor; and, 3) Managing water ecosystems.
    [Show full text]
  • Water Scarcity and Future Challenges for Food Production
    Water 2015, 7, 975-992; doi:10.3390/w7030975 OPEN ACCESS water ISSN 2073-4441 www.mdpi.com/journal/water Review Water Scarcity and Future Challenges for Food Production Noemi Mancosu 1,2,*, Richard L. Snyder 3, Gavriil Kyriakakis 2 and Donatella Spano 1,2 1 Department of Science for Nature and Environmental Resources (DipNeT), University of Sassari, Via De Nicola 9, Sassari 07100, Italy; E-Mail: [email protected] 2 IAFES Division, Euro-Mediterranean Center on Climate Change (CMCC), Sassari 07100, Italy; E-Mail: [email protected] 3 Department of Land, Air and Water Resources, University of California, One Shields Ave., Davis, CA 95616, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-079-229231. Academic Editor: Athanasios Loukas Received: 2 December 2014 / Accepted: 9 February 2015 / Published: 10 March 2015 Abstract: Present water shortage is one of the primary world issues, and according to climate change projections, it will be more critical in the future. Since water availability and accessibility are the most significant constraining factors for crop production, addressing this issue is indispensable for areas affected by water scarcity. Current and future issues related to “water scarcity” are reviewed in this paper so as to highlight the necessity of a more sustainable approach to water resource management. As a consequence of increasing water scarcity and drought, resulting from climate change, considerable water use for irrigation is expected to occur in the context of tough competition between agribusiness and other sectors of the economy. In addition, the estimated increment of the global population growth rate points out the inevitable increase of food demand in the future, with an immediate impact on farming water use.
    [Show full text]
  • The Water Crisis
    Lesson 1: The Water Crisis Teacher Materials Contents • Introduction to the Water Crisis: Teacher Lesson Plan • The Water Crisis: PowerPoint Slides with Teacher Notes • The Water Crisis Student Data Worksheet: Teacher Instructions & Answer Key • Fine Filters Initial Ideas: Teacher Instructions • The Water Crisis: Quiz Answer Key 1-T1 Introduction to the Water Crisis: Teacher Lesson Plan Orientation This lesson is an introduction to the context and human need for clean drinking water. Many students in the United States are unaware that in several parts of the world, clean drinking water is unavailable. This introductory lesson is intended to increase students’ awareness of the problem in terms of human health and as a potential source of conflict between nations, especially as the world population grows. A key goal is to spark students’ interest by addressing a topic of personal and global significance. It is within the context of the urgent need for clean water by the people of several nations that they will better understand the significance that nanomembrane filtration technology could potentially have on helping to solve one of the current largest global problems. They will refine this understanding over the course of the unit and have a chance to reflect on their initial thoughts at the end of the unit. • The Water Crisis PowerPoint slide set introduces facts about the global distribution of fresh water geologically. Areas of the world that do not have access to enough clean drinking water are highlighted. Per capita water usage, wealth, and access to sanitation are shown for several countries, and consequences from drinking contaminated water are highlighted.
    [Show full text]
  • Assessment of Physical Water Scarcity in Africa Using GRACE and TRMM Satellite Data
    remote sensing Article Assessment of Physical Water Scarcity in Africa Using GRACE and TRMM Satellite Data Emad Hasan 1,2,3,* , Aondover Tarhule 1, Yang Hong 2 and Berrien Moore III 4 1 Department of Geography, State University of New York, Binghamton, NY 10002, USA; [email protected] 2 Hydrometeorology and Remote Sensing (HyDROS) Laboratory, Advanced Radar Research Center (ARRC), University of Oklahoma, Norman, OK 73019, USA; [email protected] 3 Geology Department, Faculty of Science, Damietta University, New Damietta 34518, Egypt 4 College of Atmospheric & Geographic Sciences, University of Oklahoma, Norman, OK 73019, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-607-202-0226 Received: 15 February 2019; Accepted: 11 April 2019; Published: 13 April 2019 Abstract: The critical role of water in enabling or constraining human well-being and socioeconomic activities has led to an interest in quantitatively establishing the status of water (in)sufficiency over space and time. Falkenmark introduced the first widely accepted measure of water status, the Water Scarcity Index (WSI), which expressed the status of the availability of water resources in terms of vulnerability, stress, and scarcity. Since then, numerous indicators have been introduced, but nearly all adopt the same basic formulation; water status is a function of “available water” resource—by the demand or use. However, the accurate assessment of “available water” is difficult, especially in data-scarce regions, such as Africa. In this paper, therefore, we introduce a satellite-based Potential Available Water Storage indicator, PAWS. The method integrates GRACE (Gravity Recovery and Climate Experiment) satellite Total Water Storage (TWS) measurements with the Tropical Rainfall Measuring Mission (TRMM) precipitation estimates between 2002 and 2016.
    [Show full text]
  • Evaluating the Economic Impact of Water Scarcity in a Changing World
    ARTICLE https://doi.org/10.1038/s41467-021-22194-0 OPEN Evaluating the economic impact of water scarcity in a changing world ✉ Flannery Dolan 1 , Jonathan Lamontagne 1, Robert Link2, Mohamad Hejazi3,4, Patrick Reed 5 & Jae Edmonds 3 Water scarcity is dynamic and complex, emerging from the combined influences of climate change, basin-level water resources, and managed systems’ adaptive capacities. Beyond 1234567890():,; geophysical stressors and responses, it is critical to also consider how multi-sector, multi- scale economic teleconnections mitigate or exacerbate water shortages. Here, we contribute a global-to-basin-scale exploratory analysis of potential water scarcity impacts by linking a global human-Earth system model, a global hydrologic model, and a metric for the loss of economic surplus due to resource shortages. We find that, dependent on scenario assumptions, major hydrologic basins can experience strongly positive or strongly negative economic impacts due to global trade dynamics and market adaptations to regional scarcity. In many cases, market adaptation profoundly magnifies economic uncertainty relative to hydrologic uncertainty. Our analysis finds that impactful scenarios are often combinations of standard scenarios, showcasing that planners cannot presume drivers of uncertainty in complex adaptive systems. 1 Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA. 2 Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA. 3 Joint Global Change Research Institute,
    [Show full text]
  • Global Water Governance in the 21St Century
    Global Water Governance in the 21st Century July 2013 Authors: Heather Cooley, Newsha Ajami, Mai-Lan Ha, Veena Srinivasan, Jason Morrison, Kristina Donnelly, and Juliet Christian-Smith The full report is available online at http://www.pacinst.org/publication/global-water-governance-in-the-21st-century/ ©Copyright 2013, All Rights Reserved Designers: Nancy Ross and Paula Luu ISBN: 1893790037 ISBN 13: 978-1-893790-03-2 Cover photo: iStock.com, JordiRamisa Pacific Institute 654 13th Street, Preservation Park Oakland, California 94612 www.pacinst.org Phone: 510.251.1600 Facsimile: 510.251.2206 Global Water Governance in the 21st Century | i About the Pacific Institute The Pacific Institute is one of the world’s leading nonprofit research and policy organizations working to create a healthier planet and sustainable communities. Based in Oakland, California, we conduct interdisciplinary research and partner with stakeholders to produce solutions that advance environmental protection, economic development, and social equity – in California, nationally, and internationally. We work to change policy and find real-world solutions to problems like water shortages, habitat destruction, climate change, and environmental injustice. Since our founding in 1987, the Pacific Institute has become a locus for independent, innovative thinking that cuts across traditional areas of study, helping us make connections and bring opposing groups together. The result is effective, actionable solutions addressing issues in the fields of freshwater resources, climate change, environmental justice, and globalization. More information about the Institute and our staff, directors, funders, and programs can be found at www.pacinst.org. Global Water Governance in the 21st Century | ii About the Authors Heather Cooley Heather Cooley is the co-director of the Pacific Institute’s Water Program.
    [Show full text]
  • Water Facts and Trends
    Facts and trends Water Version 2 Introduction Everyone understands that water is essential to life. But many are only just [ now beginning to grasp how essential it is to everything in life – food, energy, transportation, nature, leisure, identity, culture, social norms, education, gender equality and virtually all the products used on a daily basis. In particular, water, energy and climate change need to be tackled together, and these are linked to agriculture too. Therefore, this paper is [ only a piece of the puzzle and should not be viewed in isolation from other sustainability concerns. Since 2004, the WBCSD has consolidated its position as the leading business voice on water in major policy events. The project has produced a set of tools intended to help companies integrate water issues in their strategic planning. These tools include Water Scenarios to 2025 (2006) and the Global Water Tool (2007). From the start, WBCSD water publications have documented successful experiences in water management within and outside a company's fenceline. A prime example of this is Collaborative he WBCSD’s Water Project aims to Actions for Sustainable Water Management (2005). enhance awareness in the Tbusiness community of critical This working document provides an overview of some basic facts and societal challenges water issues while actively promoting related to water. It has been developed by the WBCSD secretariat and is intended to mutual understanding between business support the ongoing dialogue within the WBCSD membership and with other and non-business stakeholders. stakeholders in civil society and government. The emphasis in this document is on water Engaging leading companies availability and people’s use of water for agricultural, industrial and domestic purposes.
    [Show full text]
  • Thinking About Water Differently: Managing the Water–Food–Energy Nexus
    Thinking about Water Differently Managing the Water–Food–Energy Nexus © 2013 Asian Development Bank All rights reserved. Published 2013. Printed in the Philippines. ISBN 978-92-9254-252-8 (Print), 978-92-9254-253-5 (PDF) Publication Stock No. RPT125184 Cataloging-in-Publication Data Asian Development Bank. Thinking about water differently: Managing the water–food–energy nexus. Mandaluyong City, Philippines: Asian Development Bank, 2013. 1. Water. 2. Food. 3. Energy. I. Asian Development Bank. The views expressed in this publication are those of the authors and do not necessarily reflect the views and policies of the Asian Development Bank (ADB) or its Board of Governors or the governments they represent. ADB does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. By making any designation of or reference to a particular territory or geographic area, or by using the term “country” in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area. ADB encourages printing or copying information exclusively for personal and noncommercial use with proper acknowledgment of ADB. Users are restricted from reselling, redistributing, or creating derivative works for commercial purposes without the express, written consent of ADB. Note: In this publication, “$” refers to US dollars. 6 ADB Avenue, Mandaluyong City 1550 Metro Manila, Philippines Tel +63 2 632 4444 Fax +63 2 636 2444 www.adb.org For orders, please contact:
    [Show full text]
  • Trends in Water and Agricultural Development 2
    Changing diets lead to changing water use in agriculture Artist: Sineal Yap Fui Yee, Malaysia Trends in water and 2 agricultural development Lead authors: David Molden, Karen Frenken, Randolph Barker, Charlotte de Fraiture, Bancy Mati, Mark Svendsen, Claudia Sadoff, and C. Max Finlayson Contributing authors: Sithara Attapatu, Mark Giordano, Arlene Inocencio, Mats Lannerstad, Nadia Manning, François Molle, Bert Smedema, and Domitille Vallée Overview To meet the objectives of increasing food production and alleviating poverty and hunger in an environmentally sustainable manner will require a renewed focus on agricultural water management and institutional innovations for managing water. In some areas of the world demand for water for various uses exceeds supply. But for much of the world there is a pending crisis of water supply not because of a shortage of water but because of misman- agement of water resources. This report defines water scarcity from the perspective of indi- vidual water users who lack secure access to safe and affordable water to consistently satisfy their needs for food production, drinking, washing, or livelihoods. About 2.8 billion people, more than 40% of the world’s population, live in river basins where water scarcity must be reckoned with [competing explanations]. About 1.6 billion people live in areas of economic water scarcity where human, institutional, and financial capital limit access to water even though water in nature is available locally to meet human demands. Symptoms of economic water scarcity include lack of or underdeveloped water infrastructure, whether small-scale (water harvesting structures) or large-scale (reservoirs, distribution networks); high vulnerability to short- and long-term drought; and difficult access to reliable supplies, especially for rural people.
    [Show full text]
  • Coping with Water Scarcity in Agriculture: a Global Framework for Action in a Changing Climate
    Photos: ©FAO/Marco Longari, ©FAO/Giulio Napolitano (2 & 4), ©FAO/Sergey Kozmin Napolitano (2 & 4), ©FAO/Sergey Longari, ©FAO/Giulio Photos: ©FAO/Marco Coping with water scarcity in agriculture a global framework for action in a changing climate 1 Why a global framework for action on water scarcity in agriculture is needed The world is thirsty, because it is hungry Water is essential for agricultural1 production and food security. It is the lifeblood of ecosystems, including forests, lakes and wetlands, on which the food and nutritional security of present and future generations depends. Water of appropriate quality and quantity is essential for drinking and sanitary purposes and for food production (fisheries, crops and livestock), processing and preparation. Water is also important for the energy, industry and other economic sectors. Water streams and bodies are often key means of transport (including of inputs, food and feed). Overall, water supports economic growth and income generation and, therefore, economic access to food. Nevertheless, significant parts of the world are struggling with water scarcity (Figure 1). From California to China’s eastern provinces, from Jordan to the southern tip of Africa, an estimated two-thirds of the global population – over 4 billion people – live with severe water shortages for at least one month each year. Although, overall, there will be sufficient water in a changing climate to satisfy the demand for food at the global level, a growing number of regions will face increasing water scarcity. Growing demand… As the global population heads for more than 9 billion people by 2050, demand for food is expected to surge by more than 50 percent.
    [Show full text]