Extensive-Form Games with Perfect Information

Total Page:16

File Type:pdf, Size:1020Kb

Extensive-Form Games with Perfect Information Extensive-Form Games with Perfect Information Yiling Chen September 22, 2008 CS286r Fall'08 Extensive-Form Games with Perfect Information 1 Logistics In this unit, we cover 5.1 of the SLB book. Problem Set 1, due Wednesday September 24 in class. CS286r Fall'08 Extensive-Form Games with Perfect Information 2 Review: Normal-Form Games A finite n-person normal-form game, G =< N; A; u > I N = f1; 2; :::; ng is the set of players. I A = fA1; A2; :::; Ang is a set of available actions. I u = fu1; u2; :::ung is a set of utility functions for n agents. C D C 5,5 0,8 D 8,0 1,1 Prisoner's Dilemma CS286r Fall'08 Extensive-Form Games with Perfect Information 3 Example 1: The Sharing Game Alice and Bob try to split two indivisible and identical gifts. First, Alice suggests a split: which can be \Alice keeps both", \they each keep one", and \Bob keeps both". Then, Bob chooses whether to Accept or Reject the split. If Bob accepts the split, they each get what the split specifies. If Bob rejects, they each get nothing. Alice 2-0 1-1 0-2 Bob Bob Bob A R A R A R (2,0) (0,0) (1,1) (0,0) (0,2) (0,0) CS286r Fall'08 Extensive-Form Games with Perfect Information 4 Loosely Speaking... Extensive Form I A detailed description of the sequential structure of the decision problems encountered by the players in a game. I Often represented as a game tree Perfect Information I All players know the game structure (including the payoff functions at every outcome). I Each player, when making any decision, is perfectly informed of all the events that have previously occurred. CS286r Fall'08 Extensive-Form Games with Perfect Information 5 Def. of Perfect-Information Extensive-Form Games A perfect-information extensive-form game, G = (N; H; P; u) I N = f1; 2; :::; ng is the set of players. N=fAlice, Bobg Alice 2-0 1-1 0-2 Bob Bob Bob A R A R A R (2,0) (0,0) (1,1) (0,0) (0,2) (0,0) CS286r Fall'08 Extensive-Form Games with Perfect Information 6 Def. of Perfect-Information Extensive-Form Games A perfect-information extensive-form game, G = (N; H; P; u) I H is a set of sequences (finite or infinite) F Φ 2 H k F h = (a )k=1;:::;K 2 H is a history k k F If (a )k=1;:::;K 2 H and L < K, then (a )k=1;:::;L 2 H k 1 k F (a )k=1 2 H if (a )k=1;:::;L 2 H for all positive L F Z is the set of terminal histories. H = fΦ; 2 − 0; 1 − 1; 0 − 2; (2 − 0; A); (2 − 0; R); (1 − 1; A); (1 − 1; R); (0 − 2; A); (0 − 2; R)g Alice 2-0 1-1 0-2 Bob Bob Bob A R A R A R (2,0) (0,0) (1,1) (0,0) (0,2) (0,0) CS286r Fall'08 Extensive-Form Games with Perfect Information 7 Def. of Perfect-Information Extensive-Form Games A perfect-information extensive-form game, G = (N; H; P; u) I P is the player function, P : HnZ ! N. P(Φ)=Alice P(2 − 0)=Bob P(1 − 1) = Bob P(0 − 2) = Bob Alice 2-0 1-1 0-2 Bob Bob Bob A R A R A R (2,0) (0,0) (1,1) (0,0) (0,2) (0,0) CS286r Fall'08 Extensive-Form Games with Perfect Information 8 Def. of Perfect-Information Extensive-Form Games A perfect-information extensive-form game, G = (N; H; P; u) I u = fu1; u2; :::ung is a set of utility functions, ui : Z !R. u1((2 − 0; A)) = 2 u2((2 − 0; A)) = 0 ... Alice 2-0 1-1 0-2 Bob Bob Bob A R A R A R (2,0) (0,0) (1,1) (0,0) (0,2) (0,0) CS286r Fall'08 Extensive-Form Games with Perfect Information 9 Pure Strategies in Perfect-Information Extensive-Form Games A pure strategy of player i 2 N in an extensive-form game with perfect information, G = (N; H; P; u), is a function that assigns an action in A(h) to each non-terminal history h 2 HnZ for which P(h) = i. I A(h) = fa :(h; a) 2 Hg I A pure strategy is a contingent plan that specifies the action for player i at every decision node of i. CS286r Fall'08 Extensive-Form Games with Perfect Information 10 Pure Strategies for Example 1 Alice 2-0 1-1 0-2 Bob Bob Bob A R A R A R (2,0) (0,0) (1,1) (0,0) (0,2) (0,0) S = fS1; S2g E.g. s1 = (2 − 0 if h = Φ), s2 = (A if h = 2 − 0; R if h = 1-1; R if h = 0 − 2). CS286r Fall'08 Extensive-Form Games with Perfect Information 11 Pure Strategies: Example 2 Alice A B Bob Bob C D E F Alice (3,8) (8,3) (5,5) J K (2,10) (1,0) S = fS1; S2g E.g. s1 = (A if h = Φ; J if h = BF ) s2 = (C if h = A; F if h = B) CS286r Fall'08 Extensive-Form Games with Perfect Information 12 Normal-Form Representation: Example 1 A perfect-information extensive-form game ) A normal-form game Alice 2-0 1-1 0-2 Bob Bob Bob A R A R A R (2,0) (0,0) (1,1) (0,0) (0,2) (0,0) (A,A,A) (A,A,R) (A,R,A) (A,R,R) (R,A,A) (R,A,R) (R,R,A) (R,R,R) 2-0 2,0 2,0 2,0 2,0 0,0 0,0 0,0 0,0 1-1 1,1 1,1 0,0 0,0 1,1 1,1 0,0 0,0 0-2 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0 A normal-form game ; A perfect-information extensive-form game CS286r Fall'08 Extensive-Form Games with Perfect Information 13 Normal-Form Representation: Example 2 A perfect-information extensive-form game ) A normal-form game Alice (C, E) (C, F) (D, E) (D, F) A B (A, J) 3, 8 3, 8 8, 3 8, 3 Bob Bob (A, K) 3, 8 3, 8 8, 3 8, 3 C D E F Alice (B, J) 5, 5 2,10 5, 5 1, 10 (3,8) (8,3) (5,5) J K (B, K) 5, 5 1, 0 5, 5 1, 0 (2,10) (1,0) A normal-form game ; A perfect-information extensive-form game CS286r Fall'08 Extensive-Form Games with Perfect Information 14 Pure Strategy Nash Equilibrium in Perfect-Information Extensive-Form Games A pure strategy profile s is a weak Nash Equilibrium if, for all agents i 0 0 and for all strategies si 6= si , ui (si ; s−i ) ≥ ui (si ; s−i ). (Same as in normal-form games) Alice (C, E) (C, F) (D, E) (D, F) A B (A, J) 3, 8 3, 8 8, 3 8, 3 Bob Bob (A, K) 3, 8 3, 8 8, 3 8, 3 C D E F Alice (B, J) 5, 5 2,10 5, 5 1, 10 (3,8) (8,3) (5,5) J K (B, K) 5, 5 1, 0 5, 5 1, 0 (2,10) (1,0) CS286r Fall'08 Extensive-Form Games with Perfect Information 15 Pure Strategy Nash Equilibrium in Perfect-Information Extensive-Form Games A pure strategy profile s is a weak Nash Equilibrium if, for all agents i 0 0 and for all strategies si 6= si , ui (si ; s−i ) ≥ ui (si ; s−i ). (Same as in normal-form games) Alice (C, E) (C, F) (D, E) (D, F) A B (A, J) 3, 8 3, 8 8, 3 8, 3 Bob Bob (A, K) 3, 8 3, 8 8, 3 8, 3 C D E F Alice (B, J) 5, 5 2,10 5, 5 1, 10 (3,8) (8,3) (5,5) J K (B, K) 5, 5 1, 0 5, 5 1, 0 (2,10) (1,0) CS286r Fall'08 Extensive-Form Games with Perfect Information 15 Pure Strategy Nash Equilibrium in Perfect-Information Extensive-Form Games A pure strategy profile s is a weak Nash Equilibrium if, for all agents i 0 0 and for all strategies si 6= si , ui (si ; s−i ) ≥ ui (si ; s−i ). (Same as in normal-form games) Alice (C, E) (C, F) (D, E) (D, F) A B (A, J) 3, 8 3, 8 8, 3 8, 3 Bob Bob (A, K) 3, 8 3, 8 8, 3 8, 3 C D E F Alice (B, J) 5, 5 2,10 5, 5 1, 10 (3,8) (8,3) (5,5) J K (B, K) 5, 5 1, 0 5, 5 1, 0 (2,10) (1,0) CS286r Fall'08 Extensive-Form Games with Perfect Information 15 Pure Strategy Nash Equilibrium in Perfect-Information Extensive-Form Games A pure strategy profile s is a weak Nash Equilibrium if, for all agents i 0 0 and for all strategies si 6= si , ui (si ; s−i ) ≥ ui (si ; s−i ). (Same as in normal-form games) Alice (C, E) (C, F) (D, E) (D, F) A B (A, J) 3, 8 3, 8 8, 3 8, 3 Bob Bob (A, K) 3, 8 3, 8 8, 3 8, 3 C D E F Alice (B, J) 5, 5 2,10 5, 5 1, 10 (3,8) (8,3) (5,5) J K (B, K) 5, 5 1, 0 5, 5 1, 0 (2,10) (1,0) CS286r Fall'08 Extensive-Form Games with Perfect Information 15 Pure Strategy Nash Equilibrium in Perfect-Information Extensive-Form Games A pure strategy profile s is a weak Nash Equilibrium if, for all agents i 0 0 and for all strategies si 6= si , ui (si ; s−i ) ≥ ui (si ; s−i ).
Recommended publications
  • Lecture 4 Rationalizability & Nash Equilibrium Road
    Lecture 4 Rationalizability & Nash Equilibrium 14.12 Game Theory Muhamet Yildiz Road Map 1. Strategies – completed 2. Quiz 3. Dominance 4. Dominant-strategy equilibrium 5. Rationalizability 6. Nash Equilibrium 1 Strategy A strategy of a player is a complete contingent-plan, determining which action he will take at each information set he is to move (including the information sets that will not be reached according to this strategy). Matching pennies with perfect information 2’s Strategies: HH = Head if 1 plays Head, 1 Head if 1 plays Tail; HT = Head if 1 plays Head, Head Tail Tail if 1 plays Tail; 2 TH = Tail if 1 plays Head, 2 Head if 1 plays Tail; head tail head tail TT = Tail if 1 plays Head, Tail if 1 plays Tail. (-1,1) (1,-1) (1,-1) (-1,1) 2 Matching pennies with perfect information 2 1 HH HT TH TT Head Tail Matching pennies with Imperfect information 1 2 1 Head Tail Head Tail 2 Head (-1,1) (1,-1) head tail head tail Tail (1,-1) (-1,1) (-1,1) (1,-1) (1,-1) (-1,1) 3 A game with nature Left (5, 0) 1 Head 1/2 Right (2, 2) Nature (3, 3) 1/2 Left Tail 2 Right (0, -5) Mixed Strategy Definition: A mixed strategy of a player is a probability distribution over the set of his strategies. Pure strategies: Si = {si1,si2,…,sik} σ → A mixed strategy: i: S [0,1] s.t. σ σ σ i(si1) + i(si2) + … + i(sik) = 1. If the other players play s-i =(s1,…, si-1,si+1,…,sn), then σ the expected utility of playing i is σ σ σ i(si1)ui(si1,s-i) + i(si2)ui(si2,s-i) + … + i(sik)ui(sik,s-i).
    [Show full text]
  • Evolutionary Game Theory: ESS, Convergence Stability, and NIS
    Evolutionary Ecology Research, 2009, 11: 489–515 Evolutionary game theory: ESS, convergence stability, and NIS Joseph Apaloo1, Joel S. Brown2 and Thomas L. Vincent3 1Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada, 2Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA and 3Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona, USA ABSTRACT Question: How are the three main stability concepts from evolutionary game theory – evolutionarily stable strategy (ESS), convergence stability, and neighbourhood invader strategy (NIS) – related to each other? Do they form a basis for the many other definitions proposed in the literature? Mathematical methods: Ecological and evolutionary dynamics of population sizes and heritable strategies respectively, and adaptive and NIS landscapes. Results: Only six of the eight combinations of ESS, convergence stability, and NIS are possible. An ESS that is NIS must also be convergence stable; and a non-ESS, non-NIS cannot be convergence stable. A simple example shows how a single model can easily generate solutions with all six combinations of stability properties and explains in part the proliferation of jargon, terminology, and apparent complexity that has appeared in the literature. A tabulation of most of the evolutionary stability acronyms, definitions, and terminologies is provided for comparison. Key conclusions: The tabulated list of definitions related to evolutionary stability are variants or combinations of the three main stability concepts. Keywords: adaptive landscape, convergence stability, Darwinian dynamics, evolutionary game stabilities, evolutionarily stable strategy, neighbourhood invader strategy, strategy dynamics. INTRODUCTION Evolutionary game theory has and continues to make great strides.
    [Show full text]
  • SEQUENTIAL GAMES with PERFECT INFORMATION Example
    SEQUENTIAL GAMES WITH PERFECT INFORMATION Example 4.9 (page 105) Consider the sequential game given in Figure 4.9. We want to apply backward induction to the tree. 0 Vertex B is owned by player two, P2. The payoffs for P2 are 1 and 3, with 3 > 1, so the player picks R . Thus, the payoffs at B become (0, 3). 00 Next, vertex C is also owned by P2 with payoffs 1 and 0. Since 1 > 0, P2 picks L , and the payoffs are (4, 1). Player one, P1, owns A; the choice of L gives a payoff of 0 and R gives a payoff of 4; 4 > 0, so P1 chooses R. The final payoffs are (4, 1). 0 00 We claim that this strategy profile, { R } for P1 and { R ,L } is a Nash equilibrium. Notice that the 0 00 strategy profile gives a choice at each vertex. For the strategy { R ,L } fixed for P2, P1 has a maximal payoff by choosing { R }, ( 0 00 0 00 π1(R, { R ,L }) = 4 π1(R, { R ,L }) = 4 ≥ 0 00 π1(L, { R ,L }) = 0. 0 00 In the same way, for the strategy { R } fixed for P1, P2 has a maximal payoff by choosing { R ,L }, ( 00 0 00 π2(R, {∗,L }) = 1 π2(R, { R ,L }) = 1 ≥ 00 π2(R, {∗,R }) = 0, where ∗ means choose either L0 or R0. Since no change of choice by a player can increase that players own payoff, the strategy profile is called a Nash equilibrium. Notice that the above strategy profile is also a Nash equilibrium on each branch of the game tree, mainly starting at either B or starting at C.
    [Show full text]
  • 8. Maxmin and Minmax Strategies
    CMSC 474, Introduction to Game Theory 8. Maxmin and Minmax Strategies Mohammad T. Hajiaghayi University of Maryland Outline Chapter 2 discussed two solution concepts: Pareto optimality and Nash equilibrium Chapter 3 discusses several more: Maxmin and Minmax Dominant strategies Correlated equilibrium Trembling-hand perfect equilibrium e-Nash equilibrium Evolutionarily stable strategies Worst-Case Expected Utility For agent i, the worst-case expected utility of a strategy si is the minimum over all possible Husband Opera Football combinations of strategies for the other agents: Wife min u s ,s Opera 2, 1 0, 0 s-i i ( i -i ) Football 0, 0 1, 2 Example: Battle of the Sexes Wife’s strategy sw = {(p, Opera), (1 – p, Football)} Husband’s strategy sh = {(q, Opera), (1 – q, Football)} uw(p,q) = 2pq + (1 – p)(1 – q) = 3pq – p – q + 1 We can write uw(p,q) For any fixed p, uw(p,q) is linear in q instead of uw(sw , sh ) • e.g., if p = ½, then uw(½,q) = ½ q + ½ 0 ≤ q ≤ 1, so the min must be at q = 0 or q = 1 • e.g., minq (½ q + ½) is at q = 0 minq uw(p,q) = min (uw(p,0), uw(p,1)) = min (1 – p, 2p) Maxmin Strategies Also called maximin A maxmin strategy for agent i A strategy s1 that makes i’s worst-case expected utility as high as possible: argmaxmin ui (si,s-i ) si s-i This isn’t necessarily unique Often it is mixed Agent i’s maxmin value, or security level, is the maxmin strategy’s worst-case expected utility: maxmin ui (si,s-i ) si s-i For 2 players it simplifies to max min u1s1, s2 s1 s2 Example Wife’s and husband’s strategies
    [Show full text]
  • Economics 201B Economic Theory (Spring 2021) Strategic Games
    Economics 201B Economic Theory (Spring 2021) Strategic Games Topics: terminology and notations (OR 1.7), games and solutions (OR 1.1-1.3), rationality and bounded rationality (OR 1.4-1.6), formalities (OR 2.1), best-response (OR 2.2), Nash equilibrium (OR 2.2), 2 2 examples × (OR 2.3), existence of Nash equilibrium (OR 2.4), mixed strategy Nash equilibrium (OR 3.1, 3.2), strictly competitive games (OR 2.5), evolution- ary stability (OR 3.4), rationalizability (OR 4.1), dominance (OR 4.2, 4.3), trembling hand perfection (OR 12.5). Terminology and notations (OR 1.7) Sets For R, ∈ ≥ ⇐⇒ ≥ for all . and ⇐⇒ ≥ for all and some . ⇐⇒ for all . Preferences is a binary relation on some set of alternatives R. % ⊆ From % we derive two other relations on : — strict performance relation and not  ⇐⇒ % % — indifference relation and ∼ ⇐⇒ % % Utility representation % is said to be — complete if , or . ∀ ∈ % % — transitive if , and then . ∀ ∈ % % % % can be presented by a utility function only if it is complete and transitive (rational). A function : R is a utility function representing if → % ∀ ∈ () () % ⇐⇒ ≥ % is said to be — continuous (preferences cannot jump...) if for any sequence of pairs () with ,and and , . { }∞=1 % → → % — (strictly) quasi-concave if for any the upper counter set ∈ { ∈ : is (strictly) convex. % } These guarantee the existence of continuous well-behaved utility function representation. Profiles Let be a the set of players. — () or simply () is a profile - a collection of values of some variable,∈ one for each player. — () or simply is the list of elements of the profile = ∈ { } − () for all players except . ∈ — ( ) is a list and an element ,whichistheprofile () .
    [Show full text]
  • 14.12 Game Theory Lecture Notes∗ Lectures 7-9
    14.12 Game Theory Lecture Notes∗ Lectures 7-9 Muhamet Yildiz Intheselecturesweanalyzedynamicgames(withcompleteinformation).Wefirst analyze the perfect information games, where each information set is singleton, and develop the notion of backwards induction. Then, considering more general dynamic games, we will introduce the concept of the subgame perfection. We explain these concepts on economic problems, most of which can be found in Gibbons. 1 Backwards induction The concept of backwards induction corresponds to the assumption that it is common knowledge that each player will act rationally at each node where he moves — even if his rationality would imply that such a node will not be reached.1 Mechanically, it is computed as follows. Consider a finite horizon perfect information game. Consider any node that comes just before terminal nodes, that is, after each move stemming from this node, the game ends. If the player who moves at this node acts rationally, he will choose the best move for himself. Hence, we select one of the moves that give this player the highest payoff. Assigning the payoff vector associated with this move to the node at hand, we delete all the moves stemming from this node so that we have a shorter game, where our node is a terminal node. Repeat this procedure until we reach the origin. ∗These notes do not include all the topics that will be covered in the class. See the slides for a more complete picture. 1 More precisely: at each node i the player is certain that all the players will act rationally at all nodes j that follow node i; and at each node i the player is certain that at each node j that follows node i the player who moves at j will be certain that all the players will act rationally at all nodes k that follow node j,...ad infinitum.
    [Show full text]
  • Pure and Bayes-Nash Price of Anarchy for Generalized Second Price Auction
    Pure and Bayes-Nash Price of Anarchy for Generalized Second Price Auction Renato Paes Leme Eva´ Tardos Department of Computer Science Department of Computer Science Cornell University, Ithaca, NY Cornell University, Ithaca, NY [email protected] [email protected] Abstract—The Generalized Second Price Auction has for advertisements and slots higher on the page are been the main mechanism used by search companies more valuable (clicked on by more users). The bids to auction positions for advertisements on search pages. are used to determine both the assignment of bidders In this paper we study the social welfare of the Nash equilibria of this game in various models. In the full to slots, and the fees charged. In the simplest model, information setting, socially optimal Nash equilibria are the bidders are assigned to slots in order of bids, and known to exist (i.e., the Price of Stability is 1). This paper the fee for each click is the bid occupying the next is the first to prove bounds on the price of anarchy, and slot. This auction is called the Generalized Second Price to give any bounds in the Bayesian setting. Auction (GSP). More generally, positions and payments Our main result is to show that the price of anarchy is small assuming that all bidders play un-dominated in the Generalized Second Price Auction depend also on strategies. In the full information setting we prove a bound the click-through rates associated with the bidders, the of 1.618 for the price of anarchy for pure Nash equilibria, probability that the advertisement will get clicked on by and a bound of 4 for mixed Nash equilibria.
    [Show full text]
  • Extensive Form Games with Perfect Information
    Notes Strategy and Politics: Extensive Form Games with Perfect Information Matt Golder Pennsylvania State University Sequential Decision-Making Notes The model of a strategic (normal form) game suppresses the sequential structure of decision-making. When applying the model to situations in which players move sequentially, we assume that each player chooses her plan of action once and for all. She is committed to this plan, which she cannot modify as events unfold. The model of an extensive form game, by contrast, describes the sequential structure of decision-making explicitly, allowing us to study situations in which each player is free to change her mind as events unfold. Perfect Information Notes Perfect information describes a situation in which players are always fully informed about all of the previous actions taken by all players. This assumption is used in all of the following lecture notes that use \perfect information" in the title. Later we will also study more general cases where players may only be imperfectly informed about previous actions when choosing an action. Extensive Form Games Notes To describe an extensive form game with perfect information we need to specify the set of players and their preferences, just as for a strategic game. In addition, we also need to specify the order of the players' moves and the actions each player may take at each point (or decision node). We do so by specifying the set of all sequences of actions that can possibly occur, together with the player who moves at each point in each sequence. We refer to each possible sequence of actions (a1; a2; : : : ak) as a terminal history and to the function that denotes the player who moves at each point in each terminal history as the player function.
    [Show full text]
  • Contemporaneous Perfect Epsilon-Equilibria
    Games and Economic Behavior 53 (2005) 126–140 www.elsevier.com/locate/geb Contemporaneous perfect epsilon-equilibria George J. Mailath a, Andrew Postlewaite a,∗, Larry Samuelson b a University of Pennsylvania b University of Wisconsin Received 8 January 2003 Available online 18 July 2005 Abstract We examine contemporaneous perfect ε-equilibria, in which a player’s actions after every history, evaluated at the point of deviation from the equilibrium, must be within ε of a best response. This concept implies, but is stronger than, Radner’s ex ante perfect ε-equilibrium. A strategy profile is a contemporaneous perfect ε-equilibrium of a game if it is a subgame perfect equilibrium in a perturbed game with nearly the same payoffs, with the converse holding for pure equilibria. 2005 Elsevier Inc. All rights reserved. JEL classification: C70; C72; C73 Keywords: Epsilon equilibrium; Ex ante payoff; Multistage game; Subgame perfect equilibrium 1. Introduction Analyzing a game begins with the construction of a model specifying the strategies of the players and the resulting payoffs. For many games, one cannot be positive that the specified payoffs are precisely correct. For the model to be useful, one must hope that its equilibria are close to those of the real game whenever the payoff misspecification is small. To ensure that an equilibrium of the model is close to a Nash equilibrium of every possible game with nearly the same payoffs, the appropriate solution concept in the model * Corresponding author. E-mail addresses: [email protected] (G.J. Mailath), [email protected] (A. Postlewaite), [email protected] (L.
    [Show full text]
  • Games with Hidden Information
    Games with Hidden Information R&N Chapter 6 R&N Section 17.6 • Assumptions so far: – Two-player game : Player A and B. – Perfect information : Both players see all the states and decisions. Each decision is made sequentially . – Zero-sum : Player’s A gain is exactly equal to player B’s loss. • We are going to eliminate these constraints. We will eliminate first the assumption of “perfect information” leading to far more realistic models. – Some more game-theoretic definitions Matrix games – Minimax results for perfect information games – Minimax results for hidden information games 1 Player A 1 L R Player B 2 3 L R L R Player A 4 +2 +5 +2 L Extensive form of game: Represent the -1 +4 game by a tree A pure strategy for a player 1 defines the move that the L R player would make for every possible state that the player 2 3 would see. L R L R 4 +2 +5 +2 L -1 +4 2 Pure strategies for A: 1 Strategy I: (1 L,4 L) Strategy II: (1 L,4 R) L R Strategy III: (1 R,4 L) Strategy IV: (1 R,4 R) 2 3 Pure strategies for B: L R L R Strategy I: (2 L,3 L) Strategy II: (2 L,3 R) 4 +2 +5 +2 Strategy III: (2 R,3 L) L R Strategy IV: (2 R,3 R) -1 +4 In general: If N states and B moves, how many pure strategies exist? Matrix form of games Pure strategies for A: Pure strategies for B: Strategy I: (1 L,4 L) Strategy I: (2 L,3 L) Strategy II: (1 L,4 R) Strategy II: (2 L,3 R) Strategy III: (1 R,4 L) Strategy III: (2 R,3 L) 1 Strategy IV: (1 R,4 R) Strategy IV: (2 R,3 R) R L I II III IV 2 3 L R I -1 -1 +2 +2 L R 4 II +4 +4 +2 +2 +2 +5 +1 L R III +5 +1 +5 +1 IV +5 +1 +5 +1 -1 +4 3 Pure strategies for Player B Player A’s payoff I II III IV if game is played I -1 -1 +2 +2 with strategy I by II +4 +4 +2 +2 Player A and strategy III by III +5 +1 +5 +1 Player B for Player A for Pure strategies IV +5 +1 +5 +1 • Matrix normal form of games: The table contains the payoffs for all the possible combinations of pure strategies for Player A and Player B • The table characterizes the game completely, there is no need for any additional information about rules, etc.
    [Show full text]
  • Extensive Form Games
    Extensive Form Games Jonathan Levin January 2002 1 Introduction The models we have described so far can capture a wide range of strategic environments, but they have an important limitation. In each game we have looked at, each player moves once and strategies are chosen simultaneously. This misses a common feature of many economic settings (and many classic “games” such as chess or poker). Consider just a few examples of economic environments where the timing of strategic decisions is important: • Compensation and Incentives. Firms first sign workers to a contract, then workers decide how to behave, and frequently firms later decide what bonuses to pay and/or which employees to promote. • Research and Development. Firms make choices about what tech- nologies to invest in given the set of available technologies and their forecasts about the future market. • Monetary Policy. A central bank makes decisions about the money supply in response to inflation and growth, which are themselves de- termined by individuals acting in response to monetary policy, and so on. • Entry into Markets. Prior to competing in a product market, firms must make decisions about whether to enter markets and what prod- ucts to introduce. These decisions may strongly influence later com- petition. These notes take up the problem of representing and analyzing these dy- namic strategic environments. 1 2TheExtensiveForm The extensive form of a game is a complete description of: 1. The set of players 2. Who moves when and what their choices are 3. What players know when they move 4. The players’ payoffs as a function of the choices that are made.
    [Show full text]
  • 8. Noncooperative Games 8.1 Basic Concepts Theory of Strategic Interaction Definition 8.1. a Strategy Is a Plan of Matching Penn
    EC 701, Fall 2005, Microeconomic Theory November 9, 2005 page 351 8. Noncooperative Games 8.1 Basic Concepts How I learned basic game theory in 1986. • Game theory = theory of strategic interaction • Each agent chooses a strategy in order to achieve his goals with • the knowledge that other agents may react to his strategic choice. Definition 8.1. A strategy is a plan of action that specifies what a player will do in every circumstance. EC 701, Fall 2005, Microeconomic Theory November 9, 2005 page 352 Matching Pennies (a zero-sum game) Eva and Esther each places a penny on the table simultaneously. • They each decide in advance whether to put down heads (H )or • tails (T). [This is a choice, NOT a random event as when a coin is flipped.] If both are heads (H ) or both are tails (T), then Eva pays Esther • $1. If one is heads and the other tails, then Esther pays Eva $1. • Esther HT 1 1 H − -1 1 Eva 1 1 T − 1 -1 EC 701, Fall 2005, Microeconomic Theory November 9, 2005 page 353 Esther HT 1 1 H − -1 1 Eva 1 1 T − 1 -1 Eva and Esther are the players. • H and T are strategies,and H , T is each player’s strategy • space. { } 1 and 1 are payoffs. • − Each box corresponds to a strategy profile. • For example, the top-right box represents the strategy profile • H , T h i EC 701, Fall 2005, Microeconomic Theory November 9, 2005 page 354 Deterministic strategies (without random elements) are called • pure strategies.
    [Show full text]