Novel Targets for Neuroactive Steroid Synthesis and Action and Their Relevance for Translational Research P

Total Page:16

File Type:pdf, Size:1020Kb

Novel Targets for Neuroactive Steroid Synthesis and Action and Their Relevance for Translational Research P Journal of Neuroendocrinology, 2016, 28, 10.1111/jne.12351 REVIEW ARTICLE © 2015 British Society for Neuroendocrinology Neurosteroidogenesis Today: Novel Targets for Neuroactive Steroid Synthesis and Action and Their Relevance for Translational Research P. Porcu*, A. M. Barron†, C. A. Frye‡§, A. A. Walf‡§¶, S.-Y. Yang**, X.-Y. He**, A. L. Morrow††, G. C. Panzica‡‡ and R. C. Melcangi§§ *Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy. †Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan. ‡IDEA Network of Biomedical Research Excellence and Department of Chemistry and Biochemistry, University of Alaska–Fairbanks, Fairbanks, AK, USA. §Department of Psychology, The University at Albany, Albany, NY, USA. ¶Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY, USA. **Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA. ††Departments of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA. ‡‡Department of Neuroscience, University of Turin, and NICO – Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy. §§Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita degli Studi di Milano, Milan, Italy. Journal of Neuroactive steroids are endogenous neuromodulators synthesised in the brain that rapidly alter Neuroendocrinology neuronal excitability by binding to membrane receptors, in addition to the regulation of gene expression via intracellular steroid receptors. Neuroactive steroids induce potent anxiolytic, antide- pressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the GABAA receptor. They also exert neuroprotective, neurotrophic and antiapoptotic effects in sev- eral animal models of neurodegenerative diseases. Neuroactive steroids regulate many physiologi- cal functions, such as the stress response, puberty, the ovarian cycle, pregnancy and reward. Their levels are altered in several neuropsychiatric and neurological diseases and both preclinical and clinical studies emphasise a therapeutic potential of neuroactive steroids for these diseases, whereby symptomatology ameliorates upon restoration of neuroactive steroid concentrations. However, direct administration of neuroactive steroids has several challenges, including pharma- cokinetics, low bioavailability, addiction potential, safety and tolerability, which limit its therapeutic use. Therefore, modulation of neurosteroidogenesis to restore the altered endogenous neuroactive steroid tone may represent a better therapeutic approach. This review summarises recent approaches that target the neuroactive steroid biosynthetic pathway at different levels aiming to promote neurosteroidogenesis. These include modulation of neurosteroidogenesis through ligands of the translocator protein 18 kDa and the pregnane xenobiotic receptor, as well as targeting of specific neurosteroidogenic enzymes such as 17b-hydroxysteroid dehydrogenase type 10 or P450 side chain cleavage. Enhanced neurosteroidogenesis through these targets may be beneficial not only for neurodegenerative diseases, such as Alzheimer’s disease and age-related dementia, but Correspondence to: P. Porcu, also for neuropsychiatric diseases, including alcohol use disorders. Neuroscience Institute, National a a Research Council of Italy (CNR), Key words: neuroactive steroids, 3 ,5 -THP, translocator protein 18 kDa, pregnane xenobiotic Cittadella Universitaria, 09042 receptor, 17b-hydroxysteroid dehydrogenase type 10, P450 side chain cleavage, Alzheimer’s Monserrato, Cagliari, Italy (e-mail: disease, alcoholism [email protected]). doi: 10.1111/jne.12351 They can be synthesised in the brain de novo from cholesterol, in Introduction which case they have been termed neurosteroids (2), or can reach Neuroactive steroids are endogenous neuromodulators that rapidly the brain from peripheral steroidogenic organs, such as adrenals alter neuronal excitability by binding to membrane receptors (1). and gonads, and are locally metabolised (i.e. aromatisation of 2of19 P. Porcu et al. testosterone into oestradiol) (3). The synthesis of neuroactive ster- that possess the necessary enzymatic machinery to convert choles- oids requires the translocation of cholesterol across the mitochon- terol into neuroactive steroids (4). drial membrane, which occurs through a molecular complex formed The most potent neuroactive steroids are the progesterone by the translocator protein 18 kDa (TSPO), the steroidogenic acute metabolite (3a,5a)-3-hydroxypregnan-20-one (3a,5a-THP or allo- regulatory protein (StAR), the voltage-dependent anion channel pregnanolone) and the deoxycorticosterone (DOC) metabolite protein (VDAC) and the adenine nucleotide transporter protein (3a,5a)-3,21-dihydroxypregnan-20-one (3a,5a-THDOC or allote- (ANT). In the mitochondria, cholesterol is converted to pregnenolone trahydrodeoxycorticosterone), which enhance GABAA receptor medi- by the P450 side-chain cleavage enzyme (P450scc); pregnenolone ated neurotransmission and produce inhibitory neurobehavioural diffuses into the cytosol where it is further metabolised into differ- effects (5). The 3a,5a-reduced metabolites of testosterone and ent neuroactive steroids (Fig. 1). Although TSPO, the rate-limiting dehydroepiandrosterone (DHEA), 3a,5a-androstandiol and 3a,5a- step in neuroactive steroid synthesis, is highly expressed in micro- androsterone, respectively, also potentiate GABAA receptors, albeit glia and astrocytes but less abundant in neurones, neurosteroidoge- with less potency (6). Specific binding sites for neuroactive steroids nesis occurs primarily in principal neurones of several brain areas have been identified on the a subunits of the GABAA receptor that COCH COCH 3 + 3 C = O C = O NAD NADH 17β-HSD10 5α-reductase 3β-HSD P450scc Cholesterol 3α-HSD3 3α,5α-THP NADP+ NADPH 5α-DHP Progesterone Pregnenolone O O HO HO H H 21-hydroxylase P450c17 P450c17 COCH OH COCH OH 2 + 2 NAD NADH 17α-hydroxyprogesterone 17α-hydroxypregnenolone 17β-HSD10 5α-reductase DOC O 3α-HSD3 O + NADPH 3α,5α-THDOCNADP 5α-DHDOC 3β-HSD HO O H H Androstenedione Dehydroepiandrosterone O HO OH Aromatase 17β-HSD 17β-HSD Oestrone OH OH HO 3β-HSD NADH 17β-HSD10 3α-HSD Testosterone 3α-androstenediol O + HO OH NAD Aromatase 5α-reductase 5α-reductase 17β-oestradiol OH O HO 5α-dihydrotestosterone Androstanedione OO H H NADH NADH 17β-HSD10 3α-HSD 17β-HSD10 3α-HSD + + NAD OH NAD O 17β-HSD 3α-androstanediol 3α-androsterone HO HO H H Fig. 1. Outline of neurosteroidogenesis. Neuroactive steroids and neurosteroidogenic enzymes that are potential key therapeutic targets are shown in green. The side chain of cholesterol is cleaved by P450 side-chain cleavage enzyme (P450scc) as cholesterol is transported to the inner mitochondrial membrane and thus converted to pregnenolone. Soluble pregnenolone can enter into the endoplasmic reticulum unaided. 17b-Hydroxysteroid dehydrogenase type 10 (17b- HSD10) catalyses the oxidation of neuroactive steroids in mitochondria with NAD+ as the coenzyme. This enzyme most effectively catalyzes the oxidation of (3a,5a)-3-hydroxypregnan-20-one (3a,5a-THP) and (3a,5a)-3,21-dihydroxypregnan-20-one (3a,5a-THDOC) such that it is essential for the homeostasis of these neuroactive steroids, which was controlled by a dual enzyme molecular switch, composed of 17b-HSD10 and 3a-hydroxysteroid dehydrogenase type III (AKR1C2) localised in distinct subcellular compartments, mitochondria and endoplasic reticulum, respectively (164,168). The catalytic efficiencies (kcat/Km)of 17b-HSD10 are as high as 427 and 1381 min/mM for the oxidation of 3a,5a-THP and 3a,5a-THDOC, respectively (163,164). 5a-DHP, 5a-dihydroprogesterone; DOC, deoxycorticosterone; 5a-DHDOC, 5a-dihydrodeoxycorticosterone. © 2015 British Society for Neuroendocrinology Journal of Neuroendocrinology, 2016, 28, 10.1111/jne.12351 Novel targets for neuroactive steroid synthesis and action 3of19 allosterically modulate binding to GABA and benzodiazepine recog- axis function (46,47). The neuroactive steroid response to stress is a nition sites (7). At nanomolar concentrations, 3a,5a-THP enhances complex phenomenon that involves adaptations in GABAA receptor affinity of GABA for its receptor, whereas, at micromolar concentra- plasticity and appears to differ across species (23,48). tions, it directly activates the receptor channel. 3a,5a-THP and Neuroactive steroid concentrations also fluctuate across develop- 3a,5a-THDOC modulate both synaptic and extrasynaptic GABAA ment. Brain levels of 3a,5a-THP are elevated in the embryonic rat, receptors, albeit with higher potency at extrasynaptic receptors that decrease around birth, show a transient increase on days 10–14 contain d subunits (5,6). 3a,5a-THP also modulates serotonin type and remain low until puberty (49). The onset of puberty is associ- 3 receptors, neuronal nicotinic acetylcholine receptors and voltage- ated with a rapid elevation in 3a,5a-THP levels and a marked activated calcium channels, although with micromolar potency (8). increase in extrasynaptic a4bd GABAA receptors, the main target of Another site of 3a,5a-THP action, the nuclear pregnane xenobiotic 3a,5a-THP, through which this steroid is considered to increase receptor (PXR) has been recently identified (9). By contrast, the sul- excitability, and thus exert the ‘paradoxical effect’ of increasing phated derivative
Recommended publications
  • Effect of Isopregnanolone on Rapid Tolerance to the Anxiolytic Effect of Ethanol Influência Da Isopregnenolona Na Tolerância R
    18 ORIGINAL ARTICLE Effect of isopregnanolone on rapid tolerance to the anxiolytic effect of ethanol Influência da isopregnenolona na tolerância rápida ao efeito ansiolítico do etanol Thaize Debatin,1 Adriana Dias Elpo Barbosa2 Original version accepted in Portuguese Abstract Objective: It has been shown that neurosteroids can either block or stimulate the development of chronic and rapid tolerance to the incoordination and hypothermia caused by ethanol consumption. The aim of the present study was to investigate the influence of isopregnanolone on the development of rapid tolerance to the anxiolytic effect of ethanol in mice. Method: Male Swiss mice were pretreated with isopregnanolone (0.05, 0.10 or 0.20 mg/kg) 30 min before administration of ethanol (1.5 g/kg). Twenty-four hours later, all animals we tested using the plus-maze apparatus. The first experiment defined the doses of ethanol that did or did not induce rapid tolerance to the anxiolytic effect of ethanol. In the second, the influence of pretreatment of mice with isopregnanolone (0.05, 0.10 or 0.20 mg/kg) on rapid tolerance to ethanol (1.5 g/kg) was studied. Conclusions: The results show that pretreatment with isopregnanolone interfered with the development of rapid tolerance to the anxiolytic effect of ethanol. Keywords: Ethanol; Drug tolerance; Anti-anxiety agents; Mice; Alcoholism Resumo Objetivo: Estudos prévios têm mostrado que os neuroesteróides podem bloquear ou estimular o desenvolvimento da tolerância rápida e crônica aos efeitos de incoordenação e hipotermia produzidos pelo etanol. O objetivo do presente estudo foi investigar a influência da isopregnenolona sobre o desenvolvimento da tolerância rápida ao efeito ansiolítico do etanol em camundongos.
    [Show full text]
  • Epipregnanolone and a Novel Synthetic Neuroactive Steroid Reduce Reduce Alcohol Self- Administration in Rats
    University of Texas at El Paso From the SelectedWorks of Laura Elena O'Dell 2005 Epipregnanolone and a novel synthetic neuroactive steroid reduce reduce alcohol self- administration in rats. Laura O'Dell, University of Texas at El Paso Available at: https://works.bepress.com/laura_odell/23/ Pharmacology, Biochemistry and Behavior 81 (2005) 543 – 550 www.elsevier.com/locate/pharmbiochembeh Epipregnanolone and a novel synthetic neuroactive steroid reduce alcohol self-administration in rats L.E. O’Della,b, R.H. Purdya,c,d, D.F. Coveye, H.N. Richardsona, M. Robertoa, G.F. Kooba,* aDepartment of Neuropharmacology, The Scripps Research Institute, CVN-7, 10550 North Torrey Pines Rd., La Jolla, CA, 92037, USA bDepartment of Psychology, The University of Texas at El Paso, El Paso, TX, USA cDepartment of Psychiatry, University of California San Diego, La Jolla, CA, USA dDepartment of Veterans Affairs Medical Center and Veterans Medical Research Foundation, San Diego, CA, USA eDepartment of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, MO, USA Received 6 September 2004; received in revised form 14 March 2005; accepted 31 March 2005 Available online 9 June 2005 Abstract This study was designed to compare the effects of several neuroactive steroids with varying patterns of modulation of g-aminobutyric acid (GABA)A and NMDA receptors on operant self-administration of ethanol or water. Once stable responding for 10% (w/v) ethanol was achieved, separate test sessions were conducted in which male Wistar rats were allowed to self-administer ethanol or water following pre-treatment with vehicle or one of the following neuroactive steroids: (3h,5h)-3-hydroxypregnan-20-one (epipregnanolone; 5, 10, 20 mg/kg; n =12), (3a,5h)-20-oxo-pregnane-3-carboxylic acid (PCA; 10, 20, 30 mg/kg; n =10), (3a,5h)-3-hydroxypregnan-20-one hemisuccinate (pregnanolone hemisuccinate; 5, 10, 20 mg/kg; n =12) and (3a,5a)-3-hydroxyandrostan-17-one hemisuccinate (androsterone hemisuccinate; 5, 10, 20 mg/kg; n =11).
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Epipregnanolone Item No. 34295 CAS Registry No.: 128-21-2 O Formal Name: (5β)-3β-hydroxy-pregnan-20-one Synonyms: NSC 21450, 5β-Pregnan-3β-ol-20-one MF: C21H34O2 FW: 318.5 H Purity: ≥98% H H Supplied as: A solid Storage: -20°C HO Stability: ≥2 years H Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Epipregnanolone is supplied as a solid. A stock solution may be made by dissolving the epipregnanolone in the solvent of choice, which should be purged with an inert gas. Epipregnanolone is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF). The solubility of epipregnanolone in ethanol is approximately 5 mg/ml and approximately 30 mg/ml in DMSO and DMF. Description Epipregnanolone is a neurosteroid and an active metabolite of the steroid hormone pregnenolone (Item No. 19864).1 It is enzymatically formed from prognenolone via the intermediates progesterone (Item No. 15876) and 5β-dihydroprogesterone in the placenta.2 Epipregnanolone inhibits spontaneous 3 contractions in myometrial strips isolated from at-term pregnant women (IC50 = 156 µM). Epipregnanolone (10 and 20 mg/kg) decreases operant alcohol self-administration in rats.4 Maternal plasma levels of epipregnanolone increase over the duration of pregnancy. References 1. Prince, R.J. and Simmonds, M.A. 5β-pregnan-3β-ol-20-one, a specific antagonist at the neurosteroid site of the GABAA receptor-complex. Neurosci. Lett. 135(2), 273-275 (1992). 2. Hill, M., Cibula, D., Havlíkova, H., et al. Circulating levels of pregnanolone isomers during the third trimester of human pregnancy.
    [Show full text]
  • Alteration of the Steroidogenesis in Boys with Autism Spectrum Disorders
    Janšáková et al. Translational Psychiatry (2020) 10:340 https://doi.org/10.1038/s41398-020-01017-8 Translational Psychiatry ARTICLE Open Access Alteration of the steroidogenesis in boys with autism spectrum disorders Katarína Janšáková 1, Martin Hill 2,DianaČelárová1,HanaCelušáková1,GabrielaRepiská1,MarieBičíková2, Ludmila Máčová2 and Daniela Ostatníková1 Abstract The etiology of autism spectrum disorders (ASD) remains unknown, but associations between prenatal hormonal changes and ASD risk were found. The consequences of these changes on the steroidogenesis during a postnatal development are not yet well known. The aim of this study was to analyze the steroid metabolic pathway in prepubertal ASD and neurotypical boys. Plasma samples were collected from 62 prepubertal ASD boys and 24 age and sex-matched controls (CTRL). Eighty-two biomarkers of steroidogenesis were detected using gas-chromatography tandem-mass spectrometry. We observed changes across the whole alternative backdoor pathway of androgens synthesis toward lower level in ASD group. Our data indicate suppressed production of pregnenolone sulfate at augmented activities of CYP17A1 and SULT2A1 and reduced HSD3B2 activity in ASD group which is partly consistent with the results reported in older children, in whom the adrenal zona reticularis significantly influences the steroid levels. Furthermore, we detected the suppressed activity of CYP7B1 enzyme readily metabolizing the precursors of sex hormones on one hand but increased anti-glucocorticoid effect of 7α-hydroxy-DHEA via competition with cortisone for HSD11B1 on the other. The multivariate model found significant correlations between behavioral indices and circulating steroids. From dependent variables, the best correlation was found for the social interaction (28.5%). Observed changes give a space for their utilization as biomarkers while reveal the etiopathogenesis of ASD.
    [Show full text]
  • Calcium-Engaged Mechanisms of Nongenomic Action of Neurosteroids
    Calcium-engaged Mechanisms of Nongenomic Action of Neurosteroids The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Rebas, Elzbieta, Tomasz Radzik, Tomasz Boczek, and Ludmila Zylinska. 2017. “Calcium-engaged Mechanisms of Nongenomic Action of Neurosteroids.” Current Neuropharmacology 15 (8): 1174-1191. doi:10.2174/1570159X15666170329091935. http:// dx.doi.org/10.2174/1570159X15666170329091935. Published Version doi:10.2174/1570159X15666170329091935 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37160234 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA 1174 Send Orders for Reprints to [email protected] Current Neuropharmacology, 2017, 15, 1174-1191 REVIEW ARTICLE ISSN: 1570-159X eISSN: 1875-6190 Impact Factor: 3.365 Calcium-engaged Mechanisms of Nongenomic Action of Neurosteroids BENTHAM SCIENCE Elzbieta Rebas1, Tomasz Radzik1, Tomasz Boczek1,2 and Ludmila Zylinska1,* 1Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, Poland; 2Boston Children’s Hospital and Harvard Medical School, Boston, USA Abstract: Background: Neurosteroids form the unique group because of their dual mechanism of action. Classically, they bind to specific intracellular and/or nuclear receptors, and next modify genes transcription. Another mode of action is linked with the rapid effects induced at the plasma membrane level within seconds or milliseconds. The key molecules in neurotransmission are calcium ions, thereby we focus on the recent advances in understanding of complex signaling crosstalk between action of neurosteroids and calcium-engaged events.
    [Show full text]
  • Comparison of Strategies for the Determination of Sterol Sulfates Via GC-MS Leading to a Novel Deconjugation-Derivatization Protocol
    molecules Article Comparison of Strategies for the Determination of Sterol Sulfates via GC-MS Leading to a Novel Deconjugation-Derivatization Protocol Julia Junker 1 , Isabelle Chong 1, Frits Kamp 2, Harald Steiner 2,3, Martin Giera 4 , Christoph Müller 1 and Franz Bracher 1,* 1 Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany 2 Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany 3 German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany 4 Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300 RC Leiden, The Netherlands * Correspondence: [email protected]; Tel.: +49-892-1807-7301 Academic Editor: Yasunori Yaoita Received: 27 April 2019; Accepted: 21 June 2019; Published: 26 June 2019 Abstract: Sulfoconjugates of sterols play important roles as neurosteroids, neurotransmitters, and ion channel ligands in health and disease. In most cases, sterol conjugate analysis is performed with liquid chromatography-mass spectrometry. This is a valuable tool for routine analytics with the advantage of direct sterol sulfates analysis without previous cleavage and/or derivatization. The complementary technique gas chromatography-mass spectrometry (GC-MS) is a preeminent discovery tool in the field of sterolomics, but the analysis of sterol sulfates is hampered by mandatory deconjugation and derivatization. Despite the difficulties in sample workup, GC-MS is an indispensable tool for untargeted analysis and steroid profiling. There are no general sample preparation protocols for sterol sulfate analysis using GC-MS. In this study we present a reinvestigation and evaluation of different deconjugation and derivatization procedures with a set of representative sterol sulfates.
    [Show full text]
  • Reduced Progesterone Metabolites in Human Late Pregnancy
    Physiol. Res. 60: 225-241, 2011 https://doi.org/10.33549/physiolres.932077 REVIEW Reduced Progesterone Metabolites in Human Late Pregnancy M. HILL1,2, A. PAŘÍZEK2, R. KANCHEVA1, J. E. JIRÁSEK3 1,2Institute of Endocrinology, Prague, Czech Republic, 2Department of Obstetrics and Gynecology of the First Faculty of Medicine and General Teaching Hospital, Prague, Czech Republic, 3Department of Clinical Biochemistry and Laboratory Diagnostics of the First Faculty of Medicine and General Teaching Hospital, Prague, Czech Republic Received November 20, 2010 Accepted November 25, 2010 On-line November 29, 2010 Summary Corresponding author In this review, we focused on the intersection between steroid A. Pařízek, Department of Obstetrics and Gynecology of the metabolomics, obstetrics and steroid neurophysiology to give a First Faculty of Medicine and General Teaching Hospital, comprehensive insight into the role of sex hormones and Apolinářská 18, 128 51 Prague 2, Czech Republic. E-mail: neuroactive steroids (NAS) in the mechanism controlling [email protected] pregnancy sustaining. The data in the literature including our studies show that there is a complex mechanism providing synthesis of either pregnancy sustaining or parturition provoking Introduction steroids. This mechanism includes the boosting placental synthesis of CRH with approaching parturition inducing the Although the effects of neuroactive and excessive synthesis of 3β-hydroxy-5-ene steroid sulfates serving neuroprotective 5α/β-reduced progesterone metabolites primarily as precursors for placental synthesis of progestogens, were extensively studied, the physiological relevance of estrogens and NAS. The distribution and changing activities of these substances remains frequently uncertain due to the placental oxidoreductases are responsible for the activation or lack of metabolomic data.
    [Show full text]
  • Chronic Cigarette Smoking Alters Circulating Sex Hormones and Neuroactive Steroids in Premenopausal Women
    Physiol. Res. 61: 97-111, 2012 https://doi.org/10.33549/physiolres.932164 Chronic Cigarette Smoking Alters Circulating Sex Hormones and Neuroactive Steroids in Premenopausal Women M. DUŠKOVÁ1, K. ŠIMŮNKOVÁ1, M. HILL1,4, M. VELÍKOVÁ1, J. KUBÁTOVÁ1, L. KANCHEVA1, H. KAZIHNITKOVÁ1, H. HRUŠKOVIČOVÁ1, H. POSPÍŠILOVÁ1, B. RÁCZ1, M. SALÁTOVÁ1, V. CIRMANOVÁ1, E. KRÁLÍKOVÁ2,3, L. STÁRKA1, A. PAŘÍZEK4 1Institute of Endocrinology, Prague, Czech Republic, 2Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University, Prague, Czech Republic, 3Tobacco Dependence Treatment Centre, Third Medical Department – Department of Metabolism and Endocrinology, First Faculty of Medicine, Charles University, Prague, Czech Republic, 4Department of Obstetrics and Gynecology of the First Faculty of Medicine, Charles University, Prague, Czech Republic Received February 18, 2011 Accepted October 27, 2011 On-line December 20, 2011 Summary lutropin/follitropin ratio. In conclusion, chronic cigarette smoking Chronic smoking alters the circulating levels of sex hormones and augments serum androgens and their 5α/β-reduced metabolites possibly also the neuroactive steroids. However, the data (including GABAergic substances) but suppresses the levels of available is limited. Therefore, a broad spectrum of free and estradiol in the LP and SHBG and may induce hyperandrogenism conjugated steroids and related substances was quantified by in female smokers. The female smokers had pronouncedly GC-MS and RIA in premenopausal smokers and in age-matched increased serum progestogens but paradoxically suppressed (38.9±7.3 years of age) non-smokers in the follicular (FP) and levels of their GABA-ergic metabolites. Further investigation is luteal phases (LP) of menstrual cycle (10 non-smokers and needed concerning these effects.
    [Show full text]
  • The Sigma1 Protein As a Target for the Non-Genomic Effects of Neuro(Active)Steroids: Molecular, Physiological, and Behavioral Aspects François P
    J Pharmacol Sci 100, 93 – 118 (2006) Journal of Pharmacological Sciences ©2006 The Japanese Pharmacological Society Critical Review The Sigma1 Protein as a Target for the Non-genomic Effects of Neuro(active)steroids: Molecular, Physiological, and Behavioral Aspects François P. Monnet1 and Tangui Maurice2,* 1Unité 705 de l’Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 7157 du Centre National de la Recherche Scientifique, Université de Paris V et VII, Hôpital Lariboisière-Fernand Widal, 2, rue Ambroise Paré, 75475 Paris cedex 10, France 2Unité 710 de l’Institut National de la Santé et de la Recherche Médicale, Ecole Pratique des Hautes Etudes, Université de Montpellier II, cc 105, place Eugène Bataillon, 34095 Montpellier cedex 5, France Received December 15, 2005 Abstract. Steroids synthesized in the periphery or de novo in the brain, so called ‘neuro- steroids’, exert both genomic and nongenomic actions on neurotransmission systems. Through rapid modulatory effects on neurotransmitter receptors, they influence inhibitory and excitatory neurotransmission. In particular, progesterone derivatives like 3α-hydroxy-5α-pregnan-20-one (allopregnanolone) are positive allosteric modulators of the γ-aminobutyric acid type A (GABAA) receptor and therefore act as inhibitory steroids, while pregnenolone sulphate (PREGS) and dehydroepiandrosterone sulphate (DHEAS) are negative modulators of the GABAA receptor and positive modulators of the N-methyl-D-aspartate (NMDA) receptor, therefore acting as excitatory neurosteroids. Some steroids also interact with atypical proteins, the sigma (σ) receptors. Recent studies particularly demonstrated that the σ1 receptor contributes effectively to their pharmaco- logical actions. The present article will review the data demonstrating that the σ1 receptor binds neurosteroids in physiological conditions.
    [Show full text]
  • Multidisciplinary Analysis of Biological Effects of Novel Analogs of The
    UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE des Sciences de la vie et de la santé (ED 414) INSERM UMR_S U1119 Biopathologies de la Myéline, Neuroprotection et Stratégies Thérapeutiques THÈSE En cotutelle avec l´Albert-Ludwigs-Universität Freiburg, Allemagne présentée par : Mona KAROUT soutenue le : 30 Septembre 2015 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline / Spécialité : Neurosciences Multidisciplinary analysis of biological effects of novel analogs of the neurosteroid allopregnanolone: evidence for a proliferative, neurogenic and ne uroprote ctive action THÈSE dirigée par : M. MENSAH-NYAGAN Ayikoé, Guy Professeur, Université de Strasbourg, France M. HOFMANN Hans-Dieter Professeur, Albert-Ludwigs-Universität Freiburg, Allemagne RAPPORTEURS : M. FISCHBACH Karl-Friedrich Professeur, Albert-Ludwigs-Universität Freiburg, Allemagne M. SCHWEMMLE Martin Professeur, Albert-Ludwigs-Universität Freiburg, Allemagne AUTRES MEMBRES DU JURY : M. DUFOUR André Professeur, Université de Strasbourg, France Mme. PATTE-MENSAH Christine Docteur, Université de Strasbourg, France !"# $%&'(%# To my parents A mes parents Acknowledgement ACKNOWLEDGEMENT First of all, I would like to express my appreciation and gratitude to all members of my thesis committee, Prof. Karl-Friedrich Fischbach, Prof. Martin Schwemmle, Prof. André Dufour and Dr. Christine Patte-Mensah for taking the time to evaluate my thesis. Furthermore, I would like to express my deepest gratitude to my two PhD supervisors Prof. Ayikoé Guy Mensah-Nyagan and Prof. Hans-Dieter Hofmann. I am very thankful to you Prof. Mensah-Nyagan for giving me a great opportunity for performing this joint French-German PhD. Thank you very much for the continuous support, for your patience, enthusiasm, passion for research and immense knowledge.
    [Show full text]
  • Research Article
    Available Online at http://www.recentscientific.com International Journal of CODEN: IJRSFP (USA) Recent Scientific International Journal of Recent Scientific Research Research Vol. 9, Issue, 6(E), pp. 27560-27565, June, 2018 ISSN: 0976-3031 DOI: 10.24327/IJRSR Research Article BIOSYNTHESIS OF NEUROSTEROID AND PHARMACOLOGYCAL ACTION Vandna Dewangan*., Trilochan Satapthy and Ram Sahu Department of Pharmacology, Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur-493111(C.G.) India DOI: http://dx.doi.org/10.24327/ijrsr.2018.0906.2285 ARTICLE INFO ABSTRACT Article History: Over the past decade, it has become clear that the brain, like the gonad, adrenal and placenta, is a steroid genic organ. Neurosteroids are synthetized in the central and the peripheral nervous system, Received 20th March, 2018 in glial cells, and also in neurons, from cholesterol or steroidal precursors imported from peripheral Received in revised form 27th sources. However, unlike classic steroid genic tissues, the synthesis of steroids in the nervous April, 2018 system requires the coordinate expression and regulation of the genes encoding the steroid genic Accepted 5th May, 2018 enzymes in several different cell types (neurons and glia) at different locations in the nervous Published online 28th June, 2018 system, and at distances from the cell bodies. The steroids synthesized by the brain and nervous system, given the name neurosteroids Progesterone itself is also a neurosteroid, and a progesterone Key Words: receptor has been detected in peripheral and central glial cells. At different sites in the brain, Neurosteroid, Steroid hormones, neurosteroid concentrations vary according to environmental and behavioural circumstances, such as Progesterone, Glial Cell, Nuclear receptor, stress, sex recognition, or aggressiveness.
    [Show full text]
  • The Effect of a Neuroactive Steroid Analog and An
    THE EFFECT OF A NEUROACTIVE STEROID ANALOG AND AN EXTRASYNAPTIC GABAA RECEPTOR AGONIST ON ETHANOL CONSUMPTION AND SEEKING IN MICE By Marcia Jean Ramaker A DISSERTATION Presented to the Department of Behavioral Neuroscience and Oregon Health & Science University School of Medicine In partial fulfillment of the requirements for the degree of Doctor of Philosophy February 2014 School of Medicine Oregon Health & Science University _______________________________________________________________ CERTIFICATE OF APPROVAL ___________________________________ This is to certify that the Ph.D. dissertation of Marcia J. Ramaker has been approved ______________________________________ Deborah Finn, Mentor ______________________________________ Andrey Ryabinin, Chair ______________________________________ Gregory Mark, Member ______________________________________ Kathleen Grant, Member ______________________________________ Amy Eshleman, Member ______________________________________ Charles Meshul, Member TABLE OF CONTENTS LIST OF FIGURES………………………………………………………………………………iv LIST OF TABLES………………………………………………………………………………..vi LIST OF ABBREVIATIONS ........................................................................................... vii ACKNOWLEDGEMENTS ................................................................................................ x OVERALL ABSTRACT…………………………………………………….……………..……xiii CHAPTER 1: GENERAL INTRODUCTION………………...…………………………...……1 GABAA receptor: subunits and binding sites ..................................................................
    [Show full text]