Download Download
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Archaeologist 59
Winter 2006 Number 59 The ARCHAEOLOGIST This issue: ENVIRONMENTAL ARCHAEOLOGY Submerged forests from early prehistory p10 Views of a Midlands environmental officer p20 Peatlands in peril p25 Institute of Field Archaeologists SHES, University of Reading, Whiteknights The flora of PO Box 227, Reading RG6 6AB Roman roads, tel 0118 378 6446 towns and fax 0118 378 6448 gardens email [email protected] website www.archaeologists.net p32 ONTENTS .%7 -! IN !RCHAEOLOGICAL &IELD 0RACTICE &ULL AND 0ART TIME $EVELOP YOUR CAREER BY TAKING A POSTGRADUATE DEGREE IN ARCHAEOLOGICAL PRACTICE C 4HE 5NIVERSITY OF -ANCHESTER IS LAUNCHING AN EXCITING AND UNIQUE COURSE WHICH SEEKS TO BRIDGE THE GAP BETWEEN THEORY AND PRACTICE )T COMBINES A CRITICAL AND EVALUATIVE APPROACH TO ARCHAEOLOGICAL INTERPRETATION WITH PRACTICAL SKILLS AND TECHNICAL EXPERTISE4AUGHT THROUGH CLASSROOM AND FIELDWORK BASED SESSIONS A PLACEMENT WITHIN THE PROFESSION 1 Contents AND A DISSERTATION ITS EMPHASIS IS UPON FOSTERING A NEW CRITICALLY INFORMED APPROACH TO THE PROFESSION 2 Editorial 4HE 5NIVERSITY OF -ANCHESTER IS AN INTERNATIONALLY RECOGNISED CENTRE FOR SOCIAL ARCHAEOLOGY /UR RESEARCH 3 From the Finds Tray THEMES INCLUDE POWER AND IDENTITY LANDSCAPE ARCHITECTURE AND MONUMENTALITY HERITAGE AND CONTEMPORARY 5 Finishing someone else’s story Michael Heaton, Peter Hinton and Frank Meddens SIGNIFICANCE OF THE PAST RITUAL AND RELIGION THEORY PHILOSOPHY AND PRACTICE OF ARCHAEOLOGY7E ARE A COHERENT 6 IFA and Continuous Professional Development Kate Geary AND FRIENDLY COMMUNITY WITH AN -
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus. -
(Anthemis Cotula L.): an ALIEN INVASIVE SPECIES in KASHMIR HIMALAYA
Proceedings of the 21st Asian Pacific Weed Science Society Conference (Editors: B. Marambe, U.R. Sangakkara, W.A.J.M. De Costa, and A.S.K. Abeysekara), 2-6 October 2007, Colombo, Sri Lanka. EFFECT OF SEEDLING EMERGENCE TIME ON THE PERFORMANCE OF MAYWEED (Anthemis cotula L.): AN ALIEN INVASIVE SPECIES IN KASHMIR HIMALAYA I. Rashid, Z. Reshi and B.A. Wafai Department of Botany, University of Kashmir, Srinagar, J&K, India [email protected] Abstract: Biological invasions, caused by non-native invasive species are a major factor contributing to ecosystem perturbations and hence are being actively pursued worldwide. Mayweed (Anthemis cotula L.), a native of southern Europe-West Siberia is an aggressive invasive species in Kashmir Himalaya, India. Among the myriad of attributes, seedling emergence time is critical to its successful colonization of habitats with varying levels of soil disturbance. Field studies revealed that the species recruits individuals over an extended period of time from September to May. This recruitment period is interspersed by harsh snowy winter (December-February) and hence the established plants of the species are constituted of pre-winter and post-winter populations, with former contributing to the fitness component of its life history and latter to the survival component. Except for number of achenes per capitulum and achene weight, all other investigated parameters such as stem height, number of primary branches per plant and number of capitula per plant were significantly higher in individuals belonging to pre-winter population in than the individuals constituting the post-winter plants. Fecundity of pre-winter individuals was further enhanced if decapitated by a specific herbivore that results in over-compensatory growth. -
Synergistic Effect of Herbivory and Mycorrhizal Interactions on Plant Invasiveness
African Journal of Microbiology Research Vol. 6(19), pp. 4107-4112, 23 May, 2012 Available online at http://www.academicjournals.org/AJMR DOI: 10.5897/AJMR11.1278 ISSN 1996-0808 ©2012 Academic Journals Full Length Research Paper Synergistic effect of herbivory and mycorrhizal interactions on plant invasiveness Manzoor A. Shah1*, Z. A. Reshi and I. Rashid2 1Department of Botany, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India. 2Government Degree College (Boys), Baramulla, Kashmir, India. Accepted 9 December, 2011 Amongst many novel interactions that alien plants forge with their new associates in the introduced range, the role of Arbuscular mycorrhizal (AM) mutualism and herbivory has been hitherto studied separately. Since these associations operate concurrently in nature to influence plant performance, we attempted to investigate their interactive effect on invasiveness of Mayweed Chamomile (Anthemis cotula L.), a highly invasive species in the Kashmir Himalaya, India. Survey of some field populations of A. cotula in native (European) and introduced (Kashmir Himalayan) regions revealed high incidence of phytophagous parasites on the species in native range, in contrast to almost enemy-free populations in the introduced range. However, occasional association of an aphid herbivore with some individuals of A. cotula in the introduced range was found to have positive influence on traits contributing to invasiveness of the species. We subsequently established a pot experiment in which A. cotula was grown with and without mycorrhizas and herbivores, both in isolation and combination. Results revealed that mycorrhizal inoculation and herbivory, both in isolation and in combination, influenced significantly growth and fitness, hence invasiveness, of A. cotula. -
Appendix 2: Plant Lists
Appendix 2: Plant Lists Master List and Section Lists Mahlon Dickerson Reservation Botanical Survey and Stewardship Assessment Wild Ridge Plants, LLC 2015 2015 MASTER PLANT LIST MAHLON DICKERSON RESERVATION SCIENTIFIC NAME NATIVENESS S-RANK CC PLANT HABIT # OF SECTIONS Acalypha rhomboidea Native 1 Forb 9 Acer palmatum Invasive 0 Tree 1 Acer pensylvanicum Native 7 Tree 2 Acer platanoides Invasive 0 Tree 4 Acer rubrum Native 3 Tree 27 Acer saccharum Native 5 Tree 24 Achillea millefolium Native 0 Forb 18 Acorus calamus Alien 0 Forb 1 Actaea pachypoda Native 5 Forb 10 Adiantum pedatum Native 7 Fern 7 Ageratina altissima v. altissima Native 3 Forb 23 Agrimonia gryposepala Native 4 Forb 4 Agrostis canina Alien 0 Graminoid 2 Agrostis gigantea Alien 0 Graminoid 8 Agrostis hyemalis Native 2 Graminoid 3 Agrostis perennans Native 5 Graminoid 18 Agrostis stolonifera Invasive 0 Graminoid 3 Ailanthus altissima Invasive 0 Tree 8 Ajuga reptans Invasive 0 Forb 3 Alisma subcordatum Native 3 Forb 3 Alliaria petiolata Invasive 0 Forb 17 Allium tricoccum Native 8 Forb 3 Allium vineale Alien 0 Forb 2 Alnus incana ssp rugosa Native 6 Shrub 5 Alnus serrulata Native 4 Shrub 3 Ambrosia artemisiifolia Native 0 Forb 14 Amelanchier arborea Native 7 Tree 26 Amphicarpaea bracteata Native 4 Vine, herbaceous 18 2015 MASTER PLANT LIST MAHLON DICKERSON RESERVATION SCIENTIFIC NAME NATIVENESS S-RANK CC PLANT HABIT # OF SECTIONS Anagallis arvensis Alien 0 Forb 4 Anaphalis margaritacea Native 2 Forb 3 Andropogon gerardii Native 4 Graminoid 1 Andropogon virginicus Native 2 Graminoid 1 Anemone americana Native 9 Forb 6 Anemone quinquefolia Native 7 Forb 13 Anemone virginiana Native 4 Forb 5 Antennaria neglecta Native 2 Forb 2 Antennaria neodioica ssp. -
The Case of Vrbjanska Čuka, a Tell Site in Pelagonia, Republic of Macedonia
Volume IX ● Issue 2/2018 ● Pages 121–145 INTERDISCIPLINARIA ARCHAEOLOGICA NATURAL SCIENCES IN ARCHAEOLOGY homepage: http://www.iansa.eu IX/2/2018 An Archaeobotanical Onsite Approach to the Neolithic Settlements in Southern Regions of the Balkans: The Case of Vrbjanska Čuka, a Tell Site in Pelagonia, Republic of Macedonia Jaromír Beneša,b, Goce Naumovc, Tereza Majerovičováa,b*, Kristýna Budilováa, Jiří Bumerla,b, Veronika Komárkováa, Jaromír Kovárníka, Michaela Vychronováb, Lucie Juřičkovád aLaboratory of Archaeobotany and Palaeoecology, Faculty of Science, University of South Bohemia, Na Zlaté stoce 3, 370 05 České Budějovice, Czech Republic bInstitute of Archaeology, Faculty of Philosophy, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic cCenter for Prehistoric Research/Goce Delčev University, Kiro Krstevski Platnik 11-2/7, Republic of Macedonia dDepartment of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Praha 2, Czech Republic ARTICLE INFO ABSTRACT Article history: This paper is focused on the Neolithic tell-site of Vrbjanska Čuka in Pelagonia, Republic of Received: 22nd September 2018 Macedonia, where the authors have been performing archaeobotanical research since 2016. Results of Accepted: 31st December 2018 the analyses of botanical macroremains and microremains (starch, phytoliths) and faunal microremains collected in season 2016 are presented in the broader context of the Neolithic in the Balkans in order DOI: http://dx.doi.org/ 10.24916/iansa.2018.2.1 to estimate the bioarchaeological potential of this site. The first and final parts of the paper outline the bioarchaeological studies connected with Neolithic settlements in the southern regions of the Balkans. Key words: A substantial proliferation of environmental studies has been recorded in the last decade concerning bioarchaeology the archaeobotanical and archaeozoological evidence. -
NJ Native Plants - USDA
NJ Native Plants - USDA Scientific Name Common Name N/I Family Category National Wetland Indicator Status Thermopsis villosa Aaron's rod N Fabaceae Dicot Rubus depavitus Aberdeen dewberry N Rosaceae Dicot Artemisia absinthium absinthium I Asteraceae Dicot Aplectrum hyemale Adam and Eve N Orchidaceae Monocot FAC-, FACW Yucca filamentosa Adam's needle N Agavaceae Monocot Gentianella quinquefolia agueweed N Gentianaceae Dicot FAC, FACW- Rhamnus alnifolia alderleaf buckthorn N Rhamnaceae Dicot FACU, OBL Medicago sativa alfalfa I Fabaceae Dicot Ranunculus cymbalaria alkali buttercup N Ranunculaceae Dicot OBL Rubus allegheniensis Allegheny blackberry N Rosaceae Dicot UPL, FACW Hieracium paniculatum Allegheny hawkweed N Asteraceae Dicot Mimulus ringens Allegheny monkeyflower N Scrophulariaceae Dicot OBL Ranunculus allegheniensis Allegheny Mountain buttercup N Ranunculaceae Dicot FACU, FAC Prunus alleghaniensis Allegheny plum N Rosaceae Dicot UPL, NI Amelanchier laevis Allegheny serviceberry N Rosaceae Dicot Hylotelephium telephioides Allegheny stonecrop N Crassulaceae Dicot Adlumia fungosa allegheny vine N Fumariaceae Dicot Centaurea transalpina alpine knapweed N Asteraceae Dicot Potamogeton alpinus alpine pondweed N Potamogetonaceae Monocot OBL Viola labradorica alpine violet N Violaceae Dicot FAC Trifolium hybridum alsike clover I Fabaceae Dicot FACU-, FAC Cornus alternifolia alternateleaf dogwood N Cornaceae Dicot Strophostyles helvola amberique-bean N Fabaceae Dicot Puccinellia americana American alkaligrass N Poaceae Monocot Heuchera americana -
Host Range and Impact of Dichrorampha Aeratana, the First Potential Biological Control Agent for Leucanthemum Vulgare in North America and Australia
insects Article Host Range and Impact of Dichrorampha aeratana, the First Potential Biological Control Agent for Leucanthemum vulgare in North America and Australia Sonja Stutz 1,* , Rosemarie De Clerck-Floate 2 , Hariet L. Hinz 1, Alec McClay 3 , Andrew J. McConnachie 4 and Urs Schaffner 1 1 CABI, Rue des Grillons 1, CH-2800 Delémont, Switzerland; [email protected] (H.L.H.); [email protected] (U.S.) 2 Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403—1 Ave. S., Lethbridge, AB T1J 4B1, Canada; rosemarie.declerck-fl[email protected] 3 12 Roseglen Private, Ottawa, ON K1H 1B6, Canada; [email protected] 4 Weed Research Unit, New South Wales Department of Primary Industries, Biosecurity and Food Safety, Orange, NSW 2800, Australia; [email protected] * Correspondence: [email protected] Simple Summary: Oxeye daisy, a Eurasian member of the daisy family, has become invasive in several parts of the world, including North America and Australia. We investigated whether a root-feeding moth found closely associated with oxeye daisy in Europe could be used as a biological control agent for the plant when weedy. We found that the moth could develop on 11 out of 74 plant species that we tested in laboratory conditions when it was given no choice of plants. When the Citation: Stutz, S.; De Clerck-Floate, moths were given a choice of food plants outdoors, we found its larvae only on the ornamentals R.; Hinz, H.L.; McClay, A.; Shasta daisy and creeping daisy. Larval feeding had no impact on the weight and number of flowers McConnachie, A.J.; Schaffner, U. -
Poisonous Plants and Flowers
POISONOUS PLANTS AND FLOWERS COMMON NAME BOTANIC NAME Aconite (wolfsbane, monkhood) Aconitum spp. Anemone (windflower) Anemone spp. Anthurium Anthurium spp. Atamasco lily Zephyranthes spp. Autumn crocus Colchicum autumnale Azalea Rhododendron spp. Baneberry Actaea spp. Black locust Robinia pseudo-acacia Bloodroot Sanguinaria canadensis Burning bush Euonymus spp. Buttercup Ranunculus spp. Butterfly weed Asclepias spp.. Caladium Caladium spp. Calla (calla lily) Calla palustris Carolina jasmine Gelsemium sempervirens Castor bean Ricinus communis Cherry laurel Prunus caroliniana Chinaberry (bead tree) Melia azedarach Christmas rose Helleborus niger Clematis Clematis spp. Daffodil Narcissus spp. Deadly nightshade (Belladonna) Atropoa belladona Death cammas (black snakeroot) Zigadenus spp. Delphinium (larkspur) Delphinium spp. Dogbane Apocynum androsaemifolium Dumbcane Dieffenbachia spp. Elephant ears Colocasia antiquorom False hellebore Veratrum viride Four o'clock Mirabilis jalapa Foxglove Digitalis purpurea Gloriosa lily Gloriosa superba Golden chain tree (laburnum) Laburnum anagryroides Goldenseal Hydrastis canadensis Heavenly bamboo (nandina) Nandina domestica Henbane (black henbane) Hyoscyamus niger Horse chestnut (Ohio buckeye) Aesculus spp. Horse nettle Solanum spp. Hyacinth Hyacinthus orientalis Hyacinth bean Dollichos lab lab 1 Hydrangea Hydrangea spp. Iris Iris spp. Ivy (English Ivy) Hedera helix Jack-in-the-pulpit Arisaemia triphyllum Jeruselum cherry Solanum pseudocapsicum Jessamine (jasmine) Cestrum spp. Jetbead (jetberry) Rhodotypos tetrapetala Jimson weed Datura spp. Jonquil Narcissus spp. Kentucky coffee tree Gymnocladus dioica Lantana Lantana camara Leopard's bane Arnica montana Lily of the valley Convallaria majalis Lobelia (cardinal flower) Lobelia spp. Marsh marigold Caltha palustris Mayapple (mandrake) Podophyllum peltatum Mescal bean Sophora secundiflora Mistletoe Phoradendron spp. Morning Glory Ipomoea violacea Mountain Laurel Kalmia latifolia Nightshade Solanum spp. Oleander Nerium oleander Periwinkle (myrtle, vinca) Vinca spp. -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M. -
Scentless Chamomile (PDF)
Cluster (R. Mueller) Flower head Leaf Maple Ridge Noxious Weeds Program Scentless Chamomile (Matricaria perforate or Matricaria maritima) Designation: Provincially Noxious History: Management: Scentless Chamomile was introduced to Canada Prevention: in the 1930’s from Europe. The plant is believed • Monitor for scentless chamomile on both disturbed to have been transferred as an ornamental or and undisturbed sites. contaminate of crop seed. • Look for seed mixtures that indicate where the seed material was collected, request only non‐ How to Identify: invasive species, and know the level of Size: Mature plants are 5 – 100 cm tall. ‘contamination’ from your seed supplier. Flowers: Single, white, daisy‐like flowers with • Ensure soil, gravel, and other fill material are not yellow centers at the ends of each branched contaminated. stem. Flowers are 2 – 3 cm in diameter and • Avoid unloading, parking, or storing equipment and odourless (scentless) when crushed. Flowers vehicles in infested areas. from June to October. • Minimize soil disturbance during activities and re‐ vegetate exposed soil as soon as possible. Leaves: Basal leaves disappear by flowering time. • Remove plants, plant parts, and seeds from The stem leaves are alternate, usually smooth, personal gear, clothing, pets, vehicles, and and finely divided into short, thread‐like equipment. Wash vehicles, including tires and segments. Leaves are odourless when crushed. undercarriage, and equipment at designated Stem: Stems are erect to semi‐erect, smooth, cleaning sites before leaving infested areas. and branched. Mature plant tends to be bushy • Take special care when controlling scentless when not subjected to competition. chamomile near streams or ditch lines to prevent the movement of plant parts downstream. -
Ecological Site F003XN926WA Cryic/Udic Active Natural Disturbance
Natural Resources Conservation Service Ecological site F003XN926WA Cryic/Udic Active Natural Disturbance Accessed: 09/27/2021 General information Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site. Figure 1. Mapped extent Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated. Classification relationships Related National Park Service Plant Alliances: Alnus viridis ssp. sinuate Shrubland, Abies amabilis - Abies lasiocarpa Forest and Woodland Alliance, Abies amabilis - Tsuga heterophylla - (Pseudotsuga menziesii) / (Rhododendron albiflorum) Cold Forest Alliance (Crawford 2009). This ecological site is related to the United States Forest Service Plant Association Groups: Cool VAME and Mesic VAME (Silver Fir Series). (Henderson 1992 p.83) Associated sites F003XN924WA Low Cryic/Udic West Coniferous F003XN925WA High Cryic/Udic Coniferous F003XN929WA Low Cryic/Udic East Coniferous R003XN512WA Subalpine Parkland - Active Natural Soil Disturbance Table 1. Dominant plant species Tree (1) Alnus viridis ssp. sinuata Shrub (1) Sambucus racemosa Herbaceous (1) Veratrum viride (2) Athyrium filix-femina Physiographic features This native plant community is of limited extent on mountain slope positions at higher elevations of the North Cascades. Typically this site is confined to avalanche paths and runout areas or similar areas with a higher frequency of disturbance such as talus slopes or debris torrent deposits. This ecological site has only been mapped within the boundary of the North Cascades National Park Complex.