Thesis Front Matter

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Front Matter UNIVERSITY OF CALGARY Identification and Characterization of Murine Se70-2 by Stephanie E. Minnema A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOLOGY CALGARY, ALBERTA OCTOBER, 2006 © Stephanie E. Minnema 2006 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-26242-9 Our file Notre référence ISBN: 978-0-494-26242-9 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author’s permission. In compliance with the Canadian Conformément à la loi canadienne sur la Privacy Act some supporting forms protection de la vie privée, quelques may have been removed from this formulaires secondaires ont été enlevés de thesis. cette thèse. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n’y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. Abstract Differentiation of embryonic stem (ES) cells enables the study of cellular differentiation in vitro. With an interest in regulatory genes in neural differentiation, the Rancourt lab established methods for in vitro neural differentiation of ES cells, and pursued a screen identifying genes expressed during this process. The Rancourt EST sequence dataset resulted; from this dataset the project described in this thesis arose. The work presented herein surrounds the identification and characterization of murine Se70-2 (mSe70-2), which is encoded by the gene Rbm26, represented in the Rancourt EST dataset as clone 3B6. Work presented includes the development and implementation of a data enrichment, management, and dissemination strategy for the Bain-Rancourt EST dataset: The Rancourt EST Database (RED). Analysis of the dataset by RED led to identification of 3B6, which adheres to criteria suggesting it may encode a nucleic acid binding protein involved in neural differentiation. The genomic structure of Rbm26 and a number of transcripts from the gene are identified. The analysis of Rbm26 mRNA expression in differentiating ES cell cultures, embryos, and adult tissues is shown. Expression of Rbm26 is higher in neural precursor enriched cell cultures than in spontaneously- or non-differentiating ES cells. Expression in embryos is greatest in neural and mesenchymal tissues and the timing of expression corresponds to the peak period of neurogenesis in the developing brain. Rbm26 encodes the murine homolog of human Se70-2, a putative nucleic acid binding protein. A paralog of mSe70-2 also exists, Psc1, which is a putative SR family splicing factor. Phylogenetic analysis indicates that mSe70-2 is conserved in eukaryotes, with gene duplication in vertebrate lineages. Characterization of mSe70-2 via antibody production and expression of the protein was pursued, but met with challenges. The possibility that mSe70-2 is regulated at the translational level is suggested. Knockdown of its C. elegans homolog indicates a possible role in positive regulation of the cell cycle, while the ability to bind RNA is shown using in vitro produced mSe70-2. Collectively, the results of this project suggest a role for mSe70-2 in cell fate decisions associated with differentiation along a subset of possible cell lineages. ii Acknowledgements Derrick Rancourt, for accepting me into your lab and being my academic father. Thank you also for allowing me to pursue my interests, even though they can be all over the place, figuratively and literally! I’ve learned an immense amount over the past years under your direction, and I know whichever direction I take in my career, I will be stronger with the skills you’ve given me. Doug Demetrick, for sitting on my committee. You have always been so approachable, and full of ideas and enthusiasm, even when it seemed the project was heading nowhere. I also want to thank you for the words of advice you gave me in 2005, when I thought my project was over: “fail now or fail later!” You gave me the perspective I needed to keep on going. Steve Robbins, for sitting on my committee despite your reservations about the project. Thanks you for all of your input into my project, and for helping me make sense of results that just don’t make sense. Christoph Sensen, for sitting on my committee and introducing me to Canadian Bioinformatics Workshops. I am indebted to you for the opportunities you’ve given me, and for your concern with my progress. I’ve really appreciated being able to drop in and chat (when you’re in town!) about science and life, and steal your never-ending supply of jelly beans. I’ll always remember the geese too! Torben Bech-Hansen, Angela Brooks-Wilson, Peter Bridge, and Jim McGhee, for taking time out of your busy schedules to contribute to my examinations or committee meetings during this process. Your time and interest are greatly appreciated… It also takes a village to raise a scientist! Rancourt Lab members, past and present. You guys have been my family for the past seven years. I’ve learned so much with you, not just about science, but also about life and myself. I’ll be taking with me so many memories when I go… the questionable lunch conversations, parties, window painting, joking around, Charles and Virginia the travelling mice, fighting over the music, trips to Lick’s, old Lloyd the drooling cat and Maggie’s weekend visits, creative pumpkin carving… iii Mike Wride and Fiona Mansergh, for establishing much of the work my project was built on. I miss you two; the lab just hasn’t been the same since you left! Shi-Ying Liu, for your endless efforts to get the 3B6 in situs working. I am genuinely touched by the care you put into helping me; I won’t forget your kindness. Eileen Rattner, for teaching me the finer points of ES cell culture. It’s an art form which you have mastered, and I feel lucky to have learned from the best. Ken Ito, the Zen master of molecular biology, and fellow mountain lover. I’ve learned so many little things from you… is there anything you don’t know? Jackie Irwin, fellow neat freak and mountain lover, for all of your assistance, great conversation, and organizational skills. It was a dark day when you left our lab; you were the only person who could keep on top of things! Knut Woltjen. We’re the last of the “original students” and it’s amazing we never tried to throw ourselves off the building. I could always count on you for an obscure conversation built on song lyrics, and great ideas from your molecular toolkit. Take care of Corkman, I’ll miss you both. Rebecca Everitt. Rebecca, I can’t even begin to thank you for everything you have contributed to this project, I could not have done it without you. You have taught me so much, and tolerated so many of my stupid questions. I envy your ability to stay calm even at the most stressful of times! I miss sharing an office with you, and I’ll miss the little visits with Alexandra and Trevor. Beattie Lab members, past and present. Thank you for welcoming me into your space and for the many reagents I borrowed. Your lab is a place of calm between the whirlwinds of the Rancourt labs, and I’m so lucky you guys moved in. I especially want to thank Tara, Brant, Deirdre, Chris, and Nick, for all of their excellent advice and ideas, which helped the progression of my work immensely. Jennifer Pelley, Sarah Attwell, Deirdre Lobb, and Maggie Renaud-Young, for critical reads of my thesis. You know you’ve got friends when they agree to read your thesis… I’m really thankful for your input! Ladies, you are fabulous! The friends I’ve met throughout the years. A most brilliant bunch, you are too many to name, but you know who you are. Graduate school: it’s the best of times; it’s the worst of times. I wouldn’t have made it through without you! You mean so much to me, iv even though some of you have long moved on from Calgary, and some of you are relative newcomers. Remember the times we’ve had… Fernie, Gary Bucy’s, Festivus, MSGSA kegs, martini parties, wine tasting, grad school complain-a-thons, Stampede BBQ, powder days, Robbie Burns, TGIF, Moose’s, Survivor watching, shakin’ it at the Embassy (or wherever), Halloween, science buddies, and on and on and on.
Recommended publications
  • Nuclear PTEN Safeguards Pre-Mrna Splicing to Link Golgi Apparatus for Its Tumor Suppressive Role
    ARTICLE DOI: 10.1038/s41467-018-04760-1 OPEN Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role Shao-Ming Shen1, Yan Ji2, Cheng Zhang1, Shuang-Shu Dong2, Shuo Yang1, Zhong Xiong1, Meng-Kai Ge1, Yun Yu1, Li Xia1, Meng Guo1, Jin-Ke Cheng3, Jun-Ling Liu1,3, Jian-Xiu Yu1,3 & Guo-Qiang Chen1 Dysregulation of pre-mRNA alternative splicing (AS) is closely associated with cancers. However, the relationships between the AS and classic oncogenes/tumor suppressors are 1234567890():,; largely unknown. Here we show that the deletion of tumor suppressor PTEN alters pre-mRNA splicing in a phosphatase-independent manner, and identify 262 PTEN-regulated AS events in 293T cells by RNA sequencing, which are associated with significant worse outcome of cancer patients. Based on these findings, we report that nuclear PTEN interacts with the splicing machinery, spliceosome, to regulate its assembly and pre-mRNA splicing. We also identify a new exon 2b in GOLGA2 transcript and the exon exclusion contributes to PTEN knockdown-induced tumorigenesis by promoting dramatic Golgi extension and secretion, and PTEN depletion significantly sensitizes cancer cells to secretion inhibitors brefeldin A and golgicide A. Our results suggest that Golgi secretion inhibitors alone or in combination with PI3K/Akt kinase inhibitors may be therapeutically useful for PTEN-deficient cancers. 1 Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. 2 Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China.
    [Show full text]
  • Proteomic Characterization of Transcription and Splicing Factors Associated with a Metastatic Phenotype in Colorectal Cancer
    Proteomic characterization of transcription and splicing factors associated with a metastatic phenotype in colorectal cancer Sofía Torres1+, Irene García-Palmero1+, Consuelo Marín-Vicente1,2, Rubén A. Bartolomé1, Eva Calviño1, María Jesús Fernández-Aceñero3 and J. Ignacio Casal1* +. Equal authorship 1. Functional proteomics. Centro de Investigaciones Biológicas (CIB-CSIC). Ramiro de Maeztu 9. Madrid. Spain. 2. Proteomic facilities. CIB-CSIC. Madrid. Spain 3. Department of Pathology. Hospital Clínico. Madrid. Spain Running title: Transcription factors in metastatic colorectal cancer Keywords: SRSF3, transcription factors, splicing factors, metastasis, colorectal cancer *. Corresponding author J. Ignacio Casal Department of Cellular and Molecular Medicine Centro de Investigaciones Biológicas (CIB-CSIC) Ramiro de Maeztu, 9 28040 Madrid, Spain Phone: +34 918373112 Fax: +34 91 5360432 Email: [email protected] 1 ABSTRACT We investigated new transcription and splicing factors associated with the metastatic phenotype in colorectal cancer. A concatenated tandem array of consensus transcription factors (TFs)-response elements was used to pull down nuclear extracts in two different pairs of colorectal cancer cells, KM12SM/KM12C and SW620/480, genetically-related but differing in metastatic ability. Proteins were analyzed by label-free LC-MS and quantified with MaxLFQ. We found 240 proteins showing a significant dysregulation in highly- metastatic KM12SM cells relative to non-metastatic KM12C cells and 257 proteins in metastatic SW620 versus SW480. In both cell lines there were similar alterations in genuine TFs and components of the splicing machinery like UPF1, TCF7L2/TCF-4, YBX1 or SRSF3. However, a significant number of alterations were cell-line specific. Functional silencing of MAFG, TFE3, TCF7L2/TCF-4 and SRSF3 in KM12 cells caused alterations in adhesion, survival, proliferation, migration and liver homing, supporting their role in metastasis.
    [Show full text]
  • Single Cell Derived Clonal Analysis of Human Glioblastoma Links
    SUPPLEMENTARY INFORMATION: Single cell derived clonal analysis of human glioblastoma links functional and genomic heterogeneity ! Mona Meyer*, Jüri Reimand*, Xiaoyang Lan, Renee Head, Xueming Zhu, Michelle Kushida, Jane Bayani, Jessica C. Pressey, Anath Lionel, Ian D. Clarke, Michael Cusimano, Jeremy Squire, Stephen Scherer, Mark Bernstein, Melanie A. Woodin, Gary D. Bader**, and Peter B. Dirks**! ! * These authors contributed equally to this work.! ** Correspondence: [email protected] or [email protected]! ! Supplementary information - Meyer, Reimand et al. Supplementary methods" 4" Patient samples and fluorescence activated cell sorting (FACS)! 4! Differentiation! 4! Immunocytochemistry and EdU Imaging! 4! Proliferation! 5! Western blotting ! 5! Temozolomide treatment! 5! NCI drug library screen! 6! Orthotopic injections! 6! Immunohistochemistry on tumor sections! 6! Promoter methylation of MGMT! 6! Fluorescence in situ Hybridization (FISH)! 7! SNP6 microarray analysis and genome segmentation! 7! Calling copy number alterations! 8! Mapping altered genome segments to genes! 8! Recurrently altered genes with clonal variability! 9! Global analyses of copy number alterations! 9! Phylogenetic analysis of copy number alterations! 10! Microarray analysis! 10! Gene expression differences of TMZ resistant and sensitive clones of GBM-482! 10! Reverse transcription-PCR analyses! 11! Tumor subtype analysis of TMZ-sensitive and resistant clones! 11! Pathway analysis of gene expression in the TMZ-sensitive clone of GBM-482! 11! Supplementary figures and tables" 13" "2 Supplementary information - Meyer, Reimand et al. Table S1: Individual clones from all patient tumors are tumorigenic. ! 14! Fig. S1: clonal tumorigenicity.! 15! Fig. S2: clonal heterogeneity of EGFR and PTEN expression.! 20! Fig. S3: clonal heterogeneity of proliferation.! 21! Fig.
    [Show full text]
  • Breeding Against Infectious Diseases in Animals
    Breeding against infectious diseases in animals Hamed Rashidi Thesis committee Promotor Prof. Dr J.A.M. van Arendonk Professor of Animal Breeding and Genomics Centre Wageningen University, The Netherlands Co-promotors Dr H.A. Mulder Assistant Professor, Animal Breeding and Genomics Centre Wageningen University, The Netherlands Dr P.K. Mathur Senior Geneticist, Topigs Norsvin Research Center The Netherlands Other members (assessment committee) Prof. Dr M.C.M. de Jong, Wageningen University, The Netherlands Prof. Dr J.A. Stegeman, Utrecht University, The Netherlands Prof. Dr J.K. Lunney, United States Department of Agriculture, USA Dr B. Nielsen, Pig Research Center, Denmark This research was conducted under the auspices of the Graduate School of Wageningen Institute of Animal Sciences (WIAS). Breeding against infectious diseases in animals Hamed Rashidi Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Acadamic Board to be defended in public on Friday March 18, 2016 at 16.00 p.m. in the Aula Rashidi, H. Breeding against infectious diseases in animals, 182 Pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in English ISBN 978-94-6257-645-2 Abstract Infectious diseases in farm animals are of major concern because of welfare, production costs, and public health. Control strategies, however, are not always successful. Selective breeding for the animals that can defend against infections, therefore, could be an option. Defensive ability of animals against infections consists of resistance (ability to control pathogen burden) and tolerance (ability to maintain performance when pathogen burden increases).
    [Show full text]
  • A Catalogue of Stress Granules' Components
    Catarina Rodrigues Nunes A Catalogue of Stress Granules’ Components: Implications for Neurodegeneration UNIVERSIDADE DO ALGARVE Departamento de Ciências Biomédicas e Medicina 2019 Catarina Rodrigues Nunes A Catalogue of Stress Granules’ Components: Implications for Neurodegeneration Master in Oncobiology – Molecular Mechanisms of Cancer This work was done under the supervision of: Clévio Nóbrega, Ph.D UNIVERSIDADE DO ALGARVE Departamento de Ciências Biomédicas e Medicina 2019 i ii A catalogue of Stress Granules’ Components: Implications for neurodegeneration Declaração de autoria de trabalho Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam na listagem de referências incluída. I declare that I am the author of this work, that is original and unpublished. Authors and works consulted are properly cited in the text and included in the list of references. _______________________________ (Catarina Nunes) iii Copyright © 2019 Catarina Nunes A Universidade do Algarve reserva para si o direito, em conformidade com o disposto no Código do Direito de Autor e dos Direitos Conexos, de arquivar, reproduzir e publicar a obra, independentemente do meio utilizado, bem como de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição para fins meramente educacionais ou de investigação e não comerciais, conquanto seja dado o devido crédito ao autor e editor respetivos. iv Part of the results of this thesis were published in Nunes,C.; Mestre,I.; Marcelo,A. et al. MSGP: the first database of the protein components of the mammalian stress granules. Database (2019) Vol. 2019. (In annex A). v vi ACKNOWLEDGEMENTS A realização desta tese marca o final de uma etapa académica muito especial e que jamais irei esquecer.
    [Show full text]
  • A High Throughput, Functional Screen of Human Body Mass Index GWAS Loci Using Tissue-Specific Rnai Drosophila Melanogaster Crosses Thomas J
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2018 A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses Thomas J. Baranski Washington University School of Medicine in St. Louis Aldi T. Kraja Washington University School of Medicine in St. Louis Jill L. Fink Washington University School of Medicine in St. Louis Mary Feitosa Washington University School of Medicine in St. Louis Petra A. Lenzini Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Baranski, Thomas J.; Kraja, Aldi T.; Fink, Jill L.; Feitosa, Mary; Lenzini, Petra A.; Borecki, Ingrid B.; Liu, Ching-Ti; Cupples, L. Adrienne; North, Kari E.; and Province, Michael A., ,"A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses." PLoS Genetics.14,4. e1007222. (2018). https://digitalcommons.wustl.edu/open_access_pubs/6820 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Thomas J. Baranski, Aldi T. Kraja, Jill L. Fink, Mary Feitosa, Petra A. Lenzini, Ingrid B. Borecki, Ching-Ti Liu, L. Adrienne Cupples, Kari E. North, and Michael A. Province This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/6820 RESEARCH ARTICLE A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses Thomas J.
    [Show full text]
  • Systems Genetics Analysis of the LXS Recombinant Inbred Mouse Strains:Genetic and Molecular Insights Into Acute Ethanol Tolerance
    PLOS ONE RESEARCH ARTICLE Systems genetics analysis of the LXS recombinant inbred mouse strains:Genetic and molecular insights into acute ethanol tolerance 1,2 3,4,5 3 3 Richard A. RadcliffeID *, Robin DowellID , Aaron T. Odell , Phillip A. RichmondID , 1 1 6 1 Beth Bennett , Colin LarsonID , Katerina KechrisID , Laura M. SabaID , 7 6 Pratyaydipta RudraID , Shi WenID a1111111111 1 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America, 2 Institute for Behavioral Genetics, University of Colorado a1111111111 Boulder, Boulder CO, United States of America, 3 BioFrontiers Institute, University of Colorado Boulder, a1111111111 Boulder, CO, United States of America, 4 Department of Molecular, Cellular, and Developmental Biology, a1111111111 University of Colorado Boulder, Boulder, CO, United States of America, 5 Department of Computer Science, a1111111111 University of Colorado Boulder, Boulder, CO, United States of America, 6 Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America, 7 Department of Statistics, Oklahoma State University, Stillwater, OK, United States of America * [email protected] OPEN ACCESS Citation: Radcliffe RA, Dowell R, Odell AT, Richmond PA, Bennett B, Larson C, et al. (2020) Abstract Systems genetics analysis of the LXS recombinant inbred mouse strains:Genetic and molecular We have been using the Inbred Long- and Short-Sleep mouse strains (ILS, ISS) and a insights into acute ethanol tolerance. PLoS ONE recombinant inbred panel derived from them, the LXS, to investigate the genetic underpin- 15(10): e0240253. https://doi.org/10.1371/journal.
    [Show full text]
  • Genetic Interaction Mapping and Exon-Resolution Functional Genomics with a Hybrid Cas9–Cas12a Platform
    ARTICLES https://doi.org/10.1038/s41587-020-0437-z Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9–Cas12a platform Thomas Gonatopoulos-Pournatzis 1,6 ✉ , Michael Aregger 1,6, Kevin R. Brown 1,6, Shaghayegh Farhangmehr1,2, Ulrich Braunschweig 1, Henry N. Ward 3, Kevin C. H. Ha 1, Alexander Weiss1, Maximilian Billmann 4, Tanja Durbic1, Chad L. Myers 3,4, Benjamin J. Blencowe1,2 ✉ and Jason Moffat 1,2,5 ✉ Systematic mapping of genetic interactions (GIs) and interrogation of the functions of sizable genomic segments in mammalian cells represent important goals of biomedical research. To advance these goals, we present a CRISPR (clustered regularly inter- spaced short palindromic repeats)-based screening system for combinatorial genetic manipulation that employs coexpression of CRISPR-associated nucleases 9 and 12a (Cas9 and Cas12a) and machine-learning-optimized libraries of hybrid Cas9–Cas12a guide RNAs. This system, named Cas Hybrid for Multiplexed Editing and screening Applications (CHyMErA), outperforms genetic screens using Cas9 or Cas12a editing alone. Application of CHyMErA to the ablation of mammalian paralog gene pairs reveals extensive GIs and uncovers phenotypes normally masked by functional redundancy. Application of CHyMErA in a che- mogenetic interaction screen identifies genes that impact cell growth in response to mTOR pathway inhibition. Moreover, by systematically targeting thousands of alternative splicing events, CHyMErA identifies exons underlying human cell line fit- ness. CHyMErA thus represents an effective screening approach for GI mapping and the functional analysis of sizable genomic regions, such as alternative exons. ecent breakthroughs in gene editing technologies have trans- Key to addressing these questions is the generation of tools formed mammalian cell genetics and disease research1–4.
    [Show full text]
  • The Changing Chromatome As a Driver of Disease: a Panoramic View from Different Methodologies
    The changing chromatome as a driver of disease: A panoramic view from different methodologies Isabel Espejo1, Luciano Di Croce,1,2,3 and Sergi Aranda1 1. Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2. Universitat Pompeu Fabra (UPF), Barcelona, Spain 3. ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain *Corresponding authors: Luciano Di Croce ([email protected]) Sergi Aranda ([email protected]) 1 GRAPHICAL ABSTRACT Chromatin-bound proteins regulate gene expression, replicate and repair DNA, and transmit epigenetic information. Several human diseases are highly influenced by alterations in the chromatin- bound proteome. Thus, biochemical approaches for the systematic characterization of the chromatome could contribute to identifying new regulators of cellular functionality, including those that are relevant to human disorders. 2 SUMMARY Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the “chromatome”) are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could thus reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Nanopore Direct RNA Sequencing Detects DUX4-Activated Repeats and Isoforms in Human Muscle Cells
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.224147; this version posted July 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Nanopore direct RNA sequencing detects DUX4-activated repeats and isoforms in human muscle cells Satomi Mitsuhashi1,2, So Nakagawa3,4, Martin C Frith5,6,7, Hiroaki Mitsuhashi3,8 1. Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan 2. Department of Human Genetics, Yokohama City University, Kanagawa, Japan 3. Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan. 4. Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan. 5. Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan 6. Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan 7. Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan 8. Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa, 259-1207, Japan Correspondence to: Hiroaki Mitsuhashi Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan Tel: +81-463-58-1211 Email: [email protected] Running Title: DUX4-activated repeats by direct RNA-seq Keywords. DUX4, facioscapulohumeral muscular dystrophy, muscular dystrophy, direct RNA sequencing, long read sequencer, ERV, MaLR bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.224147; this version posted July 28, 2020.
    [Show full text]
  • RADX Sustains POT1 Function at Telomeres to Counteract RAD51 Binding, Which Triggers Telomere Fragility
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.20.912634; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. RADX Sustains POT1 Function at Telomeres to Counteract RAD51 Binding, which Triggers Telomere Fragility Anna-Sophia Briod,1 Galina Glousker,1 and Joachim Lingner1,2,* 1 Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland 2 Lead Contact *Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.20.912634; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary The 3’ terminal DNA extensions at chromosome ends can become engaged into multiple biochemical reactions during DNA replication, telomerase-mediated telomere extension, homology directed DNA repair, nucleolytic processing and DNA damage checkpoint activation. To keep these activities in check, telomeric 3’ overhangs can be hidden in t-loop structures or they associate with specialized proteins such as POT1. Here, we explore the telomeric microenvironment using a proximity-dependent labeling approach and identify the oligonucleotide/oligosaccharide-binding (OB)-fold containing protein RADX. RADX binds single-stranded telomeric DNA throughout the cell cycle along with POT1, suppressing accumulation of fragile telomeres, which are indicative of telomere replication defects. Telomere fragility in POT1 and RADX double-depleted cells was due to accumulation of the RAD51 recombinase at telomeres.
    [Show full text]