The Effect of the Polyadenylation Inhibitor Cordycepin on MCF-7 Cells

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of the Polyadenylation Inhibitor Cordycepin on MCF-7 Cells Khurshid, Asma (2015) The effect of the polyadenylation inhibitor Cordycepin on MCF-7 cells. PhD thesis, University of Nottingham. Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/28835/1/PhD%20Thesis%20April%202015%20%28Examiner %20corrections%29.pdf Copyright and reuse: The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. · Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. · To the extent reasonable and practicable the material made available in Nottingham ePrints has been checked for eligibility before being made available. · Copies of full items can be used for personal research or study, educational, or not- for-profit purposes without prior permission or charge provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. · Quotations or similar reproductions must be sufficiently acknowledged. Please see our full end user licence at: http://eprints.nottingham.ac.uk/end_user_agreement.pdf A note on versions: The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. For more information, please contact [email protected] The effect of the polyadenylation inhibitor Cordycepin on MCF-7 cells Asma Khurshid, MSc (University of Nottingham) Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy July 2015 Declaration Except where acknowledged in the text, I declare that this dissertation is my own work and is based on research that was undertaken by me in the School of Pharmacy, Faculty of Science, University of Nottingham. i Abstract Cordycepin (3-deoxyadenosine) is a medicinal bioactive component of the caterpillar fungi (Cordyceps and Ophicordyceps). It is reported to have nephroprotective, antiapoptotic, anti-metastatic, hepatoprotective (Yue et al. 2013), inflammatory effects, antioxidant, anti-tumor, immunomodulatory and vasorelaxation activities. Cordycepin is well known to terminate and inhibit polyadenylation, both in vitro and in vivo. Other proposed mechanisms of action of cordycepin include activation of adenosine receptors, activation of AMP dependent kinase (AMPK) and inhibition of PARP1. The purpose of this study is to elucidate the biological and pharmacological effects of cordycepin on cancer cell lines such as MCF-7 cells. In this study I found that cordycepin reduces the cell proliferation in all examined cell lines without always exerting an effect on 4EBP phosphorylation and protein synthesis rates. Therefore, the effects on protein synthesis via inhibition of mTOR, which were previously reported, are not only the sole reason for the effect of cordycepin on cell proliferation. Knockdown of poly (A) polymerases reduces cell proliferation and survival, indicating that poly (A) polymerases are potential targets of cordycepin. I studied different adenosine analogues and found that 8 aminoadenosine, the only one that also consistently inhibits polyadenylation, also reduces levels of P-4EBP. It also inhibits the expression of specific genes indicating that the effects on polyadenylation, mTOR signalling and gene expression are linked. Also consistent with polyadenylation inhibition as the major mode of action is the fact that the effects of cordycepin on gene expression are predominantly post-transcriptional. However, knockdown of poly (A) polymerases did not have the same effects on gene expression or on polyadenylation, indicating that cordycepin may act as a dominant negative rather than as a null mutant. This is consistent with the fact that cordycepin is known to arrest a normally transient polyadenylation complex. We performed microarray analysis of cordycepin treated MCF-7 cells and found that the downregulated mRNAs were predominantly involved in transcriptional regulation, cell proliferation, cell cycle and cell migration. These data show that ii cordycepin is a promising new drug for cancer and indicates that the mode of action it is likely to be through the inhibition of polyadenylation. iii Acknowledgements Firstly, I would like to thank to my supervisor Dr Cornelia H. de Moor for her great support, time, encouragement and co operation throughout my studies. It would not be possible for me to finish off my work without her understanding of my responsibilities being a mother and a student. I do not have enough words to convey my deepest thanks to her. I would also like to thank to Keith Spriggs for his advice and guidance during my studies and especially to Catherine Jopling for helping me to carry out my radiation work safely and efficiently in a friendly manner. I also liked to convey my deepest thanks to Anne Willis and her team (MRC Toxicology unit, Leicester) for her support in performing microarray analysis for this project. I would also like to thank to all of the past and present members of the RNA biology and gene regulation group, for their support and making my time enjoyable during the work particularly Hannah Parker, Hughes Alexandra and Andrew Lewis for their support, enjoyable chats and help during the work. Special thanks to Alexander Kondrashov for not only helping me in experimental work with great experience and expertise over the past three years but also for his conceptual guidance. I would like to thank to my family especially to my father for being supportive, encouraging and for having faith in my capabilities. I would always remain thankful to my late grandmother for her kindness, care and love which will always remain in my heart. Thanks to University of Nottingham for funding support. Lastly, love to my daughters Ayra and Arfa who always reminds me a cheerful and enjoyable face of life with her love, hug and endurable smiles which not only gives me strength but also boost up my energy after many sleepless nights especially during my final stages of research work. iv Table of content Declaration ........................................................................................................... i Abstract ............................................................................................................... ii Acknowledgements ............................................................................................. iv Table of content .................................................................................................. v List of Figures ...................................................................................................... xi List of Tables ...................................................................................................... xiii List of Abbreviations .......................................................................................... xiv 1 Introduction ................................................................................................. 1 1.1 Breast cancer ......................................................................................... 1 1.1.1 Molecular subtypes of breast cancer ..................................................... 1 1.1.2 Role of receptors in Breast cancer ......................................................... 2 1.1.2.1 HER2 ................................................................................................ 2 1.1.2.2 Hormone receptors......................................................................... 3 1.1.3 Breast cancer treatment ........................................................................ 3 1.1.3.1 HER2+ treatment ............................................................................. 4 1.1.3.2 Endocrine therapy .......................................................................... 4 1.1.3.3 Chemotherapy ................................................................................ 5 1.1.4 Molecular mechanisms of breast cancer ............................................... 7 1.1.5 Breast cancer hallmarks ......................................................................... 8 1.1.5.1 Sustaining proliferative signaling .................................................... 8 1.1.5.2 Evading growth suppressors ........................................................... 8 1.1.5.3 Capable of replicative immortality ................................................. 9 1.1.5.4 Activating invasion and metastasis ................................................. 9 1.1.5.5 Inducing angiogenesis ................................................................... 10 1.1.5.6 Resisting cell death ....................................................................... 10 1.1.6 Mutational analysis of human breast cancers: Role of tumour suppressor and oncogenes ................................................................................. 11 1.1.6.1 Breast cancer mutations ............................................................... 12 1.2 Signal transduction by the insulin and growth factor pathways in breast cancer 13 1.2.1 Role of tyrosine kinase receptors ........................................................ 13 1.2.1.1 EGFR signaling in breast cancer ...................................................
Recommended publications
  • Cordycepin for Health and Wellbeing: a Potent Bioactive Metabolite of an Entomopathogenic Medicinal Fungus Cordyceps with Its Nutraceutical and Therapeutic Potential
    molecules Review Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Medicinal Fungus Cordyceps with Its Nutraceutical and Therapeutic Potential Syed Amir Ashraf 1, Abd Elmoneim O. Elkhalifa 1 , Arif Jamal Siddiqui 2 , Mitesh Patel 3 , Amir Mahgoub Awadelkareem 1, Mejdi Snoussi 2,4 , Mohammad Saquib Ashraf 5 , Mohd Adnan 2,* and Sibte Hadi 6,* 1 Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] (S.A.A.); [email protected] (A.E.O.E.); [email protected] (A.M.A.) 2 Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] (A.J.S.); [email protected] (M.S.) 3 Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India; [email protected] 4 Laboratory of Bioresources: Integrative Biology and Valorization, (LR14-ES06), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP 74, Monastir 5000, Tunisia 5 Department of Clinical Laboratory Sciences, College of Applied Medical Science, Shaqra University, Al Dawadimi PO Box 17431, Saudi Arabia; [email protected] 6 School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK * Correspondence: [email protected] (M.A.); [email protected] (S.H.); Tel.: +966-533-642-004 (M.A.); +44-1772-894-395 (S.H.) Academic Editors: Simona Fabroni, Krystian Marszałek and Aldo Todaro Received: 25 May 2020; Accepted: 10 June 2020; Published: 12 June 2020 Abstract: Cordyceps is a rare naturally occurring entomopathogenic fungus usually found at high altitudes on the Himalayan plateau and a well-known medicinal mushroom in traditional Chinese medicine.
    [Show full text]
  • Coupled Biosynthesis of Cordycepin and Pentostatin in Cordyceps Militaris: Implications for Fungal Biology and Medicinal Natural Products
    85 Editorial Commentary Page 1 of 3 Coupled biosynthesis of cordycepin and pentostatin in Cordyceps militaris: implications for fungal biology and medicinal natural products Peter A. D. Wellham1, Dong-Hyun Kim1, Matthias Brock2, Cornelia H. de Moor1,3 1School of Pharmacy, 2School of Life Sciences, 3Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK Correspondence to: Cornelia H. de Moor. School of Pharmacy, University Park, Nottingham NG7 2RD, UK. Email: [email protected]. Provenance: This is an invited article commissioned by the Section Editor Tao Wei, PhD (Principal Investigator, Assistant Professor, Microecologics Engineering Research Center of Guangdong Province in South China Agricultural University, Guangzhou, China). Comment on: Xia Y, Luo F, Shang Y, et al. Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell Chem Biol 2017;24:1479-89.e4. Submitted Apr 01, 2019. Accepted for publication Apr 04, 2019. doi: 10.21037/atm.2019.04.25 View this article at: http://dx.doi.org/10.21037/atm.2019.04.25 Cordycepin, or 3'-deoxyadenosine, is a metabolite produced be replicated in people, this could become a very important by the insect-pathogenic fungus Cordyceps militaris (C. militaris) new natural product-derived medicine. and is under intense investigation as a potential lead compound Cordycepin is known to be unstable in animals due for cancer and inflammatory conditions. Cordycepin was to deamination by adenosine deaminases. Much of the originally extracted by Cunningham et al. (1) from a culture efforts towards bringing cordycepin to the clinic have been filtrate of a C. militaris culture that was grown from conidia.
    [Show full text]
  • The Effect of the Polyadenylation Inhibitor Cordycepin on MCF-7 Cells
    The effect of the polyadenylation inhibitor Cordycepin on MCF-7 cells Asma Khurshid, MSc (University of Nottingham) Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy July 2015 Declaration Except where acknowledged in the text, I declare that this dissertation is my own work and is based on research that was undertaken by me in the School of Pharmacy, Faculty of Science, University of Nottingham. i Abstract Cordycepin (3′-deoxyadenosine) is a medicinal bioactive component of the caterpillar fungi (Cordyceps and Ophicordyceps). It is reported to have nephroprotective, antiapoptotic, anti-metastatic, hepatoprotective (Yue et al. 2013), inflammatory effects, antioxidant, anti-tumor, immunomodulatory and vasorelaxation activities. Cordycepin is well known to terminate and inhibit polyadenylation, both in vitro and in vivo. Other proposed mechanisms of action of cordycepin include activation of adenosine receptors, activation of AMP dependent kinase (AMPK) and inhibition of PARP1. The purpose of this study is to elucidate the biological and pharmacological effects of cordycepin on cancer cell lines such as MCF-7 cells. In this study I found that cordycepin reduces the cell proliferation in all examined cell lines without always exerting an effect on 4EBP phosphorylation and protein synthesis rates. Therefore, the effects on protein synthesis via inhibition of mTOR, which were previously reported, are not only the sole reason for the effect of cordycepin on cell proliferation. Knockdown of poly (A) polymerases reduces cell proliferation and survival, indicating that poly (A) polymerases are potential targets of cordycepin. I studied different adenosine analogues and found that 8 aminoadenosine, the only one that also consistently inhibits polyadenylation, also reduces levels of P-4EBP.
    [Show full text]
  • Cordycepin Inhibits Virus Replication in Dengue Virus-Infected Vero Cells
    molecules Article Cordycepin Inhibits Virus Replication in Dengue Virus-Infected Vero Cells Aussara Panya 1,2, Pucharee Songprakhon 3, Suthida Panwong 2, Kanyaluck Jantakee 2, Thida Kaewkod 2, Yingmanee Tragoolpua 2, Nunghathai Sawasdee 3, Vannajan Sanghiran Lee 4, Piyarat Nimmanpipug 1,5,* and Pa-thai Yenchitsomanus 3,* 1 Center of Excellence for Innovation in Analytical Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 2 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] (S.P.); [email protected] (K.J.); [email protected] (T.K.); [email protected] (Y.T.) 3 Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; [email protected] (P.S.); [email protected] (N.S.) 4 Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] 5 Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand * Correspondence: [email protected] (P.N.); [email protected] (P.-t.Y.) Abstract: Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. 0 Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3 -deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for Citation: Panya, A.; Songprakhon, P.; centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the Panwong, S.; Jantakee, K.; Kaewkod, anti-DENV activity of cordycepin is unknown.
    [Show full text]
  • Cellular Uptake and Intracellular Phosphorylation of GS-441524: Implications for Its Effectiveness Against COVID-19
    viruses Review Cellular Uptake and Intracellular Phosphorylation of GS-441524: Implications for Its Effectiveness against COVID-19 Henrik Berg Rasmussen 1,2,*, Gesche Jürgens 3, Ragnar Thomsen 4 , Olivier Taboureau 5, Kornelius Zeth 2, Poul Erik Hansen 2 and Peter Riis Hansen 6 1 Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, DK-4000 Roskilde, Denmark 2 Department of Science and Environment, Roskilde University Center, DK-4000 Roskilde, Denmark; [email protected] (K.Z.); [email protected] (P.E.H.) 3 Clinical Pharmacology Unit, Zealand University Hospital, DK-4000 Roskilde, Denmark; [email protected] 4 Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; [email protected] 5 INSERM U1133, CNRS UMR 8251, Université de Paris, F-75013 Paris, France; [email protected] 6 Department of Cardiology, Herlev and Gentofte Hospital, DK-2900 Hellerup, Denmark; [email protected] * Correspondence: [email protected] Abstract: GS-441524 is an adenosine analog and the parent nucleoside of the prodrug remdesivir, which has received emergency approval for treatment of COVID-19. Recently, GS-441524 has been proposed to be effective in the treatment of COVID-19, perhaps even being superior to remdesivir for treatment of this disease. Evaluation of the clinical effectiveness of GS-441524 requires understanding Citation: Rasmussen, H.B.; Jürgens, of its uptake and intracellular conversion to GS-441524 triphosphate, the active antiviral substance. G.; Thomsen, R.; Taboureau, O.; Zeth, We here discuss the potential impact of these pharmacokinetic steps of GS-441524 on the formation K.; Hansen, P.E.; Hansen, P.R.
    [Show full text]
  • ( 12 ) United States Patent
    US010266485B2 (12 ) United States Patent (10 ) Patent No. : US 10 , 266 , 485 B2 Benenato ( 45 ) Date of Patent: * Apr. 23, 2019 ( 54 ) COMPOUNDS AND COMPOSITIONS FOR ( 2013. 01 ) ; C07C 227/ 16 (2013 . 01 ) ; C07C INTRACELLULAR DELIVERY OF 227/ 18 ( 2013 .01 ) ; C07C 229 / 16 (2013 . 01 ) ; THERAPEUTIC AGENTS C07C 233 / 36 ( 2013 .01 ) ; C07C 235 / 10 (2013 .01 ) ; C07C 255 /24 ( 2013 . 01 ) ; C07C (71 ) Applicant: Moderna TX , Inc ., Cambridge , MA 271/ 20 ( 2013 . 01 ) ; C07C 275 / 14 ( 2013 . 01 ) ; (US ) C07C 279 /12 ( 2013 .01 ) ; C07C 279 / 24 ( 2013 . 01 ) ; C07C 279 /28 ( 2013 .01 ) ; C07C ( 72 ) Inventor: Kerry E . Benenato , Sudbury , MA (US ) 279 / 32 ( 2013 . 01 ) ; C07C 311 / 05 ( 2013 . 01 ) ; C07C 335 / 08 (2013 . 01 ) ; C070 207 / 27 (73 ) Assignee : ModernaTX , Inc. , Cambridge, MA ( 2013 .01 ) ; CO7D 233 / 72 ( 2013 . 01 ) ; C07D (US ) 249 /04 (2013 .01 ) ; C07D 263 / 20 ( 2013 .01 ) ; C07D 265 / 33 ( 2013 .01 ) ; C07D 271 / 06 ( * ) Notice : Subject to any disclaimer, the term of this ( 2013 .01 ) ; C07D 271/ 10 (2013 .01 ) ; C07D patent is extended or adjusted under 35 277 / 38 ( 2013 . 01 ) ; C07F 9 / 091 ( 2013 .01 ) ; U . S . C . 154 ( b ) by 0 days . CO7K 14 /505 ( 2013. 01 ) ; A61K 9 /1271 This patent is subject to a terminal dis (2013 .01 ) ; A61K 48 / 00 ( 2013 .01 ) ; C07C claimer . 2601/ 02 (2017 .05 ) ; C07C 2601 / 04 ( 2017 . 05 ) ; C07C 2601/ 14 ( 2017 .05 ) ; C07C 2601 / 18 (21 ) Appl . No. : 16 / 005 , 286 (2017 . 05 ) (58 ) Field of Classification Search (22 ) Filed : Jun . 11 , 2018 CPC .. A61K 39 /00 ; A61K 51 /08 ; CO7K 14 /81 ; C07H 21 /00 (65 ) Prior Publication Data USPC .
    [Show full text]
  • Cordycepin Induces Apoptosis and Autophagy in Human Neuroblastoma SK‑N‑SH and BE(2)‑M17 Cells
    ONCOLOGY LETTERS 9: 2541-2547, 2015 Cordycepin induces apoptosis and autophagy in human neuroblastoma SK‑N‑SH and BE(2)‑M17 cells YIFAN LI1,2, RONG LI1, SHENGLANG ZHU3, RUYUN ZHOU4, LEI WANG1, JIHUI DU1, YONG WANG5, BEI ZHOU1 and LIWEN MAI1 1Central Laboratory; 2Shenzhen Key Lab of Endogenous Infection; Departments of 3Nephrology, 4Chinese Traditional Medicine Rheumatology and 5Gastroenterology, Affiliated Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China Received June 30, 2014; Accepted February 11, 2015 DOI: 10.3892/ol.2015.3066 Abstract. Cordycepin, also termed 3'-deoxyadenosine, is The prevalence of neuroblastoma is ~1 case in 7,000 live a derivative of the nucleoside adenosine that represents births (1-3). Approximately 40% of neuroblastoma patients a potential novel class of anticancer drugs targeting the present with a localized tumor, which appears as a large 3' untranslated region of RNAs. Cordycepin has been lump in the abdomen, pelvis, chest or neck, that may press reported to induce apoptosis in certain cancer cell lines, on other parts of the body (4). The disease exhibits extreme but the effects of cordycepin on human neuroblastoma cells heterogeneity, and is stratified into three risk categories, low, have not been studied. In the present study, an MTT assay intermediate and high risk (3). These risk catergories are revealed that cordycepin inhibits the viability of neuroblas- based on clinical and biological features, including MYCN toma SK-N-SH and BE(2)-M17 cells in a dose-dependent copy number, histopathology, tumor ploidy in infants, manner. In addition, cordycepin increases the early-apop- patient age and tumor stage [according to the International totic cell population of SK-N-SH cells, as determined by Neuroblastoma Staging System (5)] (3).
    [Show full text]
  • Cordycepin Nanoencapsulated in Poly(Lactic-Co- Glycolic Acid) Exhibits Better Cytotoxicity and Lower Hemotoxicity Than Free Drug
    Nanotechnology, Science and Applications Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Cordycepin Nanoencapsulated in Poly(Lactic-Co- Glycolic Acid) Exhibits Better Cytotoxicity and Lower Hemotoxicity Than Free Drug This article was published in the following Dove Press journal: Nanotechnology, Science and Applications – Gregory Marslin 1 3 Purpose: Cordycepin, a natural product isolated from the fungus Cordyceps militaris, is Vinoth Khandelwal4 a potential candidate for breast cancer therapy. However, due to its structural similarity with Gregory Franklin 5 adenosine, cordycepin is rapidly metabolized into an inactive form in the body, hindering its development as a therapeutic agent. In the present study, we have prepared cordycepin as 1School of Pharmacy, Sathyabama Institute of Science and Technology, nanoparticles in poly(lactic-co-glycolic acid) (PLGA) and compared their cellular uptake, Jeppiaar Nagar, Rajiv Gandhi Salai, cytotoxicity and hemolytic potential with free cordycepin. 2 Chennai 600119, India; Ratnam Institute Materials and Methods: Cordycepin-loaded PLGA nanoparticles (CPNPs) were prepared of Pharmacy and Research, Nellore, 524346, India; 3College of Biological by the double-emulsion solvent evaporation method. Physico-chemical characterization of Science and Engineering, Shaanxi the nanoparticles was done by zetasizer, transmission electron microscopy (TEM) and University of Technology, Hanzhong, reverse-phase high-pressure liquid chromatography (RP-HPLC) analyses.
    [Show full text]
  • Therapeutic Potential and Biological Applications of Cordycepin and Metabolic Mechanisms in Cordycepin-Producing Fungi
    Review Therapeutic Potential and Biological Applications of Cordycepin and Metabolic Mechanisms in Cordycepin-Producing Fungi Peng Qin 1, XiangKai Li 2, Hui Yang 1,3, Zhi-Ye Wang 1,3 and DengXue Lu 1,* 1 Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, Gansu Province, China; [email protected] (P.Q.); [email protected] (H.Y.); [email protected] (Z.-Y.W.) 2 Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China; [email protected] 3 Key Laboratory of Microbial Resources Exploition and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, LanZhou 730000, Gansu Province, China * Correspondence: [email protected]; Tel.: +86-931-8418216 Received: 5 May 2019; Accepted: 6 June 2019; Published: 14 June 2019 Abstract: Cordycepin(3′-deoxyadenosine), a cytotoxic nucleoside analogue found in Cordyceps militaris, has attracted much attention due to its therapeutic potential and biological value. Cordycepin interacts with multiple medicinal targets associated with cancer, tumor, inflammation, oxidant, polyadenylation of mRNA, etc. The investigation of the medicinal drug actions supports the discovery of novel targets and the development of new drugs to enhance the therapeutic potency and reduce toxicity. Cordycepin may be of great value owing to its medicinal potential as an external drug, such as in cosmeceutical, traumatic, antalgic and muscle strain applications. In addition, the biological application of cordycepin, for example, as a ligand, has been used to uncover molecular structures. Notably, studies that investigated the metabolic mechanisms of cordycepin-producing fungi have yielded significant information related to the biosynthesis of high levels of cordycepin.
    [Show full text]
  • New Insights Into Cordycepin Production in Cordyceps Militaris and Applications
    78 Editorial Commentary Page 1 of 3 New insights into cordycepin production in Cordyceps militaris and applications Sunita Chamyuang1,2, Amorn Owatworakit1,2, Yoichi Honda3 1School of Science, 2Microbial Products and Innovation Research Unit, Mae Fah Luang University, Chaing Rai, Thailand; 3Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan Correspondence to: Yoichi Honda. Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan. Email: [email protected]. Provenance: This is an invited article commissioned by the Section Editor Tao Wei, PhD (Principal Investigator, Assistant Professor, Microecologics Engineering Research Center of Guangdong Province in South China Agricultural University, Guangzhou, China). Comment on: Xia Y, Luo F, Shang Y, et al. Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell Chem Biol 2017;24:1479-89.e4. Submitted Mar 18, 2019. Accepted for publication Mar 31, 2019. doi: 10.21037/atm.2019.04.12 View this article at: http://dx.doi.org/10.21037/atm.2019.04.12 Cordycepin, 3’-deoxyadenosine, is a nucleoside analog research effort on improving cordycepin yield, which has of adenosine, which was first isolated in 1950 from focused on optimization of extraction methods, cultivation Cordyceps militaris. The compound possesses various conditions, strain improvement and biosynthesis pathway of biological activities including antitumor, anti-diabetic, cordycepin. immunomodulatory and anti-bacterial effects (1). The conventional extraction methods of cordycepin Cordycepin is considered a chemical marker for fungi from C. militaris fruiting bodies are water based or alcohol in the genus Cordyceps. Previous reports have postulated based. However ultrasonic-assisted extraction (5) or that cordycepin is one of the main active components in enzyme-assisted extraction (6) have also been attempted Ophiocordyceps sinensis (formerly C.
    [Show full text]
  • A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps Sinensis in Dongchongxiacao (冬蟲夏草 Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Traditional and Complementary Medicine Vo1. 3, No. 1, pp. 16-32 Copyright © 2013 Committee on Chinese Medicine and Pharmacy, Taiwan This is an open access article under the CC BY-NC-ND license. A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps sinensis in DongChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients Hui-Chen Lo1, Chienyan Hsieh2, Fang-Yi Lin3 and Tai-Hao Hsu3 1Department of Nutritional Science, Fu Jen Catholic University, Xinzhuang District, New Taipei City, Taiwan. 2Department of Biotechnology, National Kaohsiung Normal University, Yanchao Township, Kao-Hsiung County, Taiwan. 3Department of Medicinal Botanicals and Healthcare and Department of Bioindustry Technology, Da-Yeh University, Changhua, Taiwan. ABSTRACT The caterpillar fungus Ophiocordyceps sinensis (syn.† Cordyceps sinensis), which was originally used in traditional Tibetan and Chinese medicine, is called either “yartsa gunbu” or “DongChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo)” (“winter worm- summer grass”), respectively. The extremely high price of DongChongXiaCao, approximately USD $20,000 to 40,000 per kg, has led to it being regarded as “soft gold” in China. The multi-fungi hypothesis has been proposed for DongChongXiaCao; however, Hirsutella sinensis is the anamorph of O. sinensis. In Chinese, the meaning of “DongChongXiaCao” is different for O. ‡ ƒ sinensis, Cordyceps spp., and Cordyceps sp . Over 30 bioactivities, such as immunomodulatory, antitumor, anti-inflammatory, and antioxidant activities, have been reported for wild DongChongXiaCao and for the mycelia and culture supernatants of O. sinensis. These bioactivities derive from over 20 bioactive ingredients, mainly extracellular polysaccharides, intracellular polysaccharides, cordycepin, adenosine, mannitol, and sterols.
    [Show full text]
  • Improved Cordycepin Production by Cordyceps Militaris KYL05 Using Casein Hydrolysate in Submerged Conditions
    biomolecules Article Improved Cordycepin Production by Cordyceps militaris KYL05 Using Casein Hydrolysate in Submerged Conditions Soo Kweon Lee 1, Ju Hun Lee 1, Hyeong Ryeol Kim 1, Youngsang Chun 2, Ja Hyun Lee 1,3, Hah Young Yoo 4,* , Chulhwan Park 5,* and Seung Wook Kim 1,* 1 Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea 2 Department of Interdisciplinary Bio-Micro System Technology, College of Engineering, Korea University, 145 Anam-Ro 5, Seongbuk-Gu, Seoul 02841, Korea 3 Department of Food Science and Engineering, Dongyang Mirae University, 445, Gyeongin-Ro, Guro-Gu, Seoul 08221, Korea 4 Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Korea 5 Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Korea * Correspondence: [email protected] (H.Y.Y.); [email protected] (C.P.); [email protected] (S.W.K.) Received: 14 August 2019; Accepted: 5 September 2019; Published: 7 September 2019 Abstract: Cordycepin, a beneficial bioactive product specifically found in Cordyceps, has received attention in various bioindustrial applications such as in pharmaceuticals, functional foods, and cosmetics, due to its significant functions. However, low productivity of cordycepin is a barrier to commercialization. in this study, Cordyceps militaris was mutated by UV irradiation to improve the cordycepin production. the highest producer KYL05 strain was finally selected and its cordycepin production was increased about 1.5-fold compared to wild type. in addition, the effects of culture conditions were fundamentally investigated. Optimal conditions were as follows: pH 6, temperature of 25 ◦C, shaking speed of 150 rpm, and culture time of 6 days.
    [Show full text]