Proteome Sequencing and Analysis of Ophiocordyceps Sinensis At

Total Page:16

File Type:pdf, Size:1020Kb

Proteome Sequencing and Analysis of Ophiocordyceps Sinensis At Zhang et al. BMC Genomics (2020) 21:886 https://doi.org/10.1186/s12864-020-07298-z RESEARCH ARTICLE Open Access Proteome sequencing and analysis of Ophiocordyceps sinensis at different culture periods Bo Zhang1,BoLi1, Xiao-Hui Men1, Zhe-Wen Xu1, Hui Wu2,3, Xiang-Tian Qin2,3, Feng Xu2,3, Yi Teng2,3, Shui-Jin Yuan2,3, Li-Qun Jin1, Zhi-Qiang Liu1* and Yu-Guo Zheng1 Abstract Background: Ophiocordyceps sinensis is an important traditional Chinese medicine for its comprehensive active ingredients, such as cordycepin, cordycepic acid, and Cordyceps polysaccharide. O. sinensis zjut, a special strain isolated from O. sinensis, has similar pharmacological functions to wild O. sinensis. Currently, O. sinensis with artificial cultivation has been widely studied, but systematic fundamental research at protein levels has not been determined. Results: Proteomes of O. sinensis zjut at different culture periods (growth period, 3rd day; pre-stable period, 6th day; and stable period, 9th day) were relatively quantified by relative isotope markers and absolute quantitative technology. In total, 4005 proteins were obtained and further annotated with Gene Ontology, Kyoto Encyclopedia of Genes and Genomes database. Based on the result of the annotations, metabolic pathways of active ingredients, amino acids and fatty acid were constructed, and the related enzymes were exhibited. Subsequently, comparative proteomics of O. sinensis zjut identified the differentially expressed proteins (DEPs) by growth in different culture periods, to find the important proteins involved in metabolic pathways of active ingredients. 605 DEPs between 6d- VS-3d, 1188 DEPs between 9d-VS-3d, and 428 DEPs between 9d-VS-6d were obtained, respectively. Conclusion: This work provided scientific basis to study protein profile and comparison of protein expression levels of O. sinensis zjut, and it will be helpful for metabolic engineering works to active ingredients for exploration, application and improvement of this fungus. Keywords: O. sinensis zjut, Proteome, Differentially expressed proteins, Active ingredients Background immunomodulatory effects, antioxidant activity and Ophiocordyceps sinensis is an important traditional anti-cancer [4, 5]. However, due to high demand and in- Chinese medicine and healthy food in China [1–3]. Pre- sufficient supply for wild O. sinensis, the medicinal value vious studies have revealed that active ingredients of O. development has been seriously limited [6, 7]. Recently, sinensis, including D-mannitol, cordycepin, purine nu- several strains that isolated from wild O. sinensis have cleotides and polysaccharide, have various pharmaco- similar pharmacological functions to wild O. sinensis [8], logical functions, such as adaptogenic activity, representing an useful alternative for production. More- over, new potential drugs and active compounds derived * Correspondence: [email protected] from natural sources have been screened as effective dis- 1 Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of ease treatment from Hirsutella sinensis, which is the po- Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China tential anamorph of O. sinensis. The antitumor activity Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Zhang et al. BMC Genomics (2020) 21:886 Page 2 of 10 of H. sinensis mycelium was found as seen in studies on functions directly at the protein level and tried to illu- human tissue, including prostate (PC3), breast (MCF7), minate the synthesis mechanism of active ingredients in hepatocellular (HepG2, Hep3B) and colorectal (HT-29) this study. [9, 10]. Previous studies have revealed the active ingredi- In this study, proteomes of the O. sinensis zjut at dif- ents of artificially-cultivated O. sinensis had extensive ferent culture periods were relatively quantified by medicinal value for human health, such as anti-fatigue iTRAQ together with two-dimensional liquid chroma- activity [11], immunomodulatory activity [12], antioxi- tography tandem mass spectrometry (LC-MS/MS). dant activity [13] and anti-obesity effects [14]. Further- Large-scale identification and different expression ana- more, the productions of active ingredients in H. sinensis lysis of the proteins were performed, and metabolic by submerged fermentation were promoted and satisfy- pathways were constructed, especially active ingredients. ing on the basis of genetic study [15–17]. Proteomics is the large-scale study of proteins, and it can be divided into the areas of large-scale identification Results of proteins and their post-translational modifications, Protein profiling and iTRAQ quantification comparison of protein expression levels, and protein- In order to obtain the overview of the O. sinensis zjut protein interactions [18]. In previous studies, biochem- proteome, the protein samples were prepared from the ical methods have been widely used to study proteome, mycelium at different culture periods (3d, 6d and 9d) including polyacrylamide gel electrophoresis (PAGE), and relatively quantified by iTRAQ. A total of 371,999 two-dimensional electrophoresis (2-DE) liquid chroma- spectra were generated and 4005 proteins included 22, tography, surface-enhanced laser desorption ionization- 202 peptides were identified (with 1% FDR) (Supplemen- time of flight-mass spectrometry (SELDI-TOF-MS), and tary information 3: Table S2). GO analysis of total pro- matrix-assisted laser desorption ionization-time of flight- teins was based on biological process, cellular mass spectrometry (MALDI-TOF-MS) [19, 20]. Re- component and molecular function, and all proteins cently, with the ability to carry out relative (or absolute) were classified into 41 functional groups (Fig. 1). Bio- quantification in up to eight phenotypes, isobaric tags logical processes were associated with the following brief for relative and absolute quantification (iTRAQ) have pathways: metabolic process (29.27%), cellular process caught the attention of proteomics community [21, 22]. (25.99%) and single-organism process (17.72%); cellular iTRAQ-based proteomics has been used in studying components were assigned to the following cellular com- secretome, plasma membrane proteome, and intracellu- partments: cell (24.98%), cell part (24.98%) and organelle lar proteome [22–24]. (15.73%); The most highly enriched molecular functions Genome sequence of O. sinensis has been reported, were binding (48.34%), followed by catalytic activity which revealed the pathogenic mechanism during life (40.73%). Moreover, the proteins were further classified cycle [25]. Then, transcriptomes of H. sinensis at diffi- into 24 functional categories using COG classifications dent culture periods have been sequenced and analyzed (Fig. 2). The largest group category was found to have to describe metabolic pathway and infection mechanism general functions only (18.68%), followed by transla- [26]. Meanwhile, the comparative proteomic has shown tion, ribosomal structure and biogenesis (9.00%), and a snapshot proteome profile and revealed the similarity posttranslational modification, protein turnover, chap- of the proteins and metabolites composition between erones (7.72%). Only a small fraction of the protein naturally- and artificially-cultivated of O. sinensis [27]. was functionally related to the categories of cell mo- Dong et al studied the dynamic polymorphic alterations tility (0.22%) and nuclear structure (0.06%). About among differentially expressed proteins of multiple in- 2.95% of the identified proteins (94 proteins) were re- trinsic fungi in the caterpillar body and stroma of nat- lated to secondary metabolites biosynthesis, transport ural O. sinensis during maturation, and the results and catabolism. revealed there were the apparent proteomic polymorph- In this study, 6d-VS-3d, 9d-VS-3d, and 9d-VS-6d ism dissimilarity of these organisms to support the inte- were set as comparison groups. Corresponding pro- grated micro-ecosystem hypothesis for natural O. teins, exhibiting a greater than 1.2-fold change and sinensis [28]. In addition, there were some non- Q-value less than 0.05, were defined as differentially quantitative studies about the proteomics of O. sinensis expressed proteins. Ultimately, 605 DEPs (340 up- [27–30]. In fact, without the complement of proteomics, regulated proteins and 265 down-regulated proteins) only genome and transcriptome sequences are not suffi- between 6d-VS-3d,
Recommended publications
  • Cordycepin for Health and Wellbeing: a Potent Bioactive Metabolite of an Entomopathogenic Medicinal Fungus Cordyceps with Its Nutraceutical and Therapeutic Potential
    molecules Review Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Medicinal Fungus Cordyceps with Its Nutraceutical and Therapeutic Potential Syed Amir Ashraf 1, Abd Elmoneim O. Elkhalifa 1 , Arif Jamal Siddiqui 2 , Mitesh Patel 3 , Amir Mahgoub Awadelkareem 1, Mejdi Snoussi 2,4 , Mohammad Saquib Ashraf 5 , Mohd Adnan 2,* and Sibte Hadi 6,* 1 Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] (S.A.A.); [email protected] (A.E.O.E.); [email protected] (A.M.A.) 2 Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] (A.J.S.); [email protected] (M.S.) 3 Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India; [email protected] 4 Laboratory of Bioresources: Integrative Biology and Valorization, (LR14-ES06), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP 74, Monastir 5000, Tunisia 5 Department of Clinical Laboratory Sciences, College of Applied Medical Science, Shaqra University, Al Dawadimi PO Box 17431, Saudi Arabia; [email protected] 6 School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK * Correspondence: [email protected] (M.A.); [email protected] (S.H.); Tel.: +966-533-642-004 (M.A.); +44-1772-894-395 (S.H.) Academic Editors: Simona Fabroni, Krystian Marszałek and Aldo Todaro Received: 25 May 2020; Accepted: 10 June 2020; Published: 12 June 2020 Abstract: Cordyceps is a rare naturally occurring entomopathogenic fungus usually found at high altitudes on the Himalayan plateau and a well-known medicinal mushroom in traditional Chinese medicine.
    [Show full text]
  • Coupled Biosynthesis of Cordycepin and Pentostatin in Cordyceps Militaris: Implications for Fungal Biology and Medicinal Natural Products
    85 Editorial Commentary Page 1 of 3 Coupled biosynthesis of cordycepin and pentostatin in Cordyceps militaris: implications for fungal biology and medicinal natural products Peter A. D. Wellham1, Dong-Hyun Kim1, Matthias Brock2, Cornelia H. de Moor1,3 1School of Pharmacy, 2School of Life Sciences, 3Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK Correspondence to: Cornelia H. de Moor. School of Pharmacy, University Park, Nottingham NG7 2RD, UK. Email: [email protected]. Provenance: This is an invited article commissioned by the Section Editor Tao Wei, PhD (Principal Investigator, Assistant Professor, Microecologics Engineering Research Center of Guangdong Province in South China Agricultural University, Guangzhou, China). Comment on: Xia Y, Luo F, Shang Y, et al. Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell Chem Biol 2017;24:1479-89.e4. Submitted Apr 01, 2019. Accepted for publication Apr 04, 2019. doi: 10.21037/atm.2019.04.25 View this article at: http://dx.doi.org/10.21037/atm.2019.04.25 Cordycepin, or 3'-deoxyadenosine, is a metabolite produced be replicated in people, this could become a very important by the insect-pathogenic fungus Cordyceps militaris (C. militaris) new natural product-derived medicine. and is under intense investigation as a potential lead compound Cordycepin is known to be unstable in animals due for cancer and inflammatory conditions. Cordycepin was to deamination by adenosine deaminases. Much of the originally extracted by Cunningham et al. (1) from a culture efforts towards bringing cordycepin to the clinic have been filtrate of a C. militaris culture that was grown from conidia.
    [Show full text]
  • The Effect of the Polyadenylation Inhibitor Cordycepin on MCF-7 Cells
    The effect of the polyadenylation inhibitor Cordycepin on MCF-7 cells Asma Khurshid, MSc (University of Nottingham) Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy July 2015 Declaration Except where acknowledged in the text, I declare that this dissertation is my own work and is based on research that was undertaken by me in the School of Pharmacy, Faculty of Science, University of Nottingham. i Abstract Cordycepin (3′-deoxyadenosine) is a medicinal bioactive component of the caterpillar fungi (Cordyceps and Ophicordyceps). It is reported to have nephroprotective, antiapoptotic, anti-metastatic, hepatoprotective (Yue et al. 2013), inflammatory effects, antioxidant, anti-tumor, immunomodulatory and vasorelaxation activities. Cordycepin is well known to terminate and inhibit polyadenylation, both in vitro and in vivo. Other proposed mechanisms of action of cordycepin include activation of adenosine receptors, activation of AMP dependent kinase (AMPK) and inhibition of PARP1. The purpose of this study is to elucidate the biological and pharmacological effects of cordycepin on cancer cell lines such as MCF-7 cells. In this study I found that cordycepin reduces the cell proliferation in all examined cell lines without always exerting an effect on 4EBP phosphorylation and protein synthesis rates. Therefore, the effects on protein synthesis via inhibition of mTOR, which were previously reported, are not only the sole reason for the effect of cordycepin on cell proliferation. Knockdown of poly (A) polymerases reduces cell proliferation and survival, indicating that poly (A) polymerases are potential targets of cordycepin. I studied different adenosine analogues and found that 8 aminoadenosine, the only one that also consistently inhibits polyadenylation, also reduces levels of P-4EBP.
    [Show full text]
  • Cordycepin Inhibits Virus Replication in Dengue Virus-Infected Vero Cells
    molecules Article Cordycepin Inhibits Virus Replication in Dengue Virus-Infected Vero Cells Aussara Panya 1,2, Pucharee Songprakhon 3, Suthida Panwong 2, Kanyaluck Jantakee 2, Thida Kaewkod 2, Yingmanee Tragoolpua 2, Nunghathai Sawasdee 3, Vannajan Sanghiran Lee 4, Piyarat Nimmanpipug 1,5,* and Pa-thai Yenchitsomanus 3,* 1 Center of Excellence for Innovation in Analytical Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 2 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] (S.P.); [email protected] (K.J.); [email protected] (T.K.); [email protected] (Y.T.) 3 Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; [email protected] (P.S.); [email protected] (N.S.) 4 Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] 5 Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand * Correspondence: [email protected] (P.N.); [email protected] (P.-t.Y.) Abstract: Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. 0 Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3 -deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for Citation: Panya, A.; Songprakhon, P.; centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the Panwong, S.; Jantakee, K.; Kaewkod, anti-DENV activity of cordycepin is unknown.
    [Show full text]
  • The Effect of the Polyadenylation Inhibitor Cordycepin on MCF-7 Cells
    Khurshid, Asma (2015) The effect of the polyadenylation inhibitor Cordycepin on MCF-7 cells. PhD thesis, University of Nottingham. Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/28835/1/PhD%20Thesis%20April%202015%20%28Examiner %20corrections%29.pdf Copyright and reuse: The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. · Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. · To the extent reasonable and practicable the material made available in Nottingham ePrints has been checked for eligibility before being made available. · Copies of full items can be used for personal research or study, educational, or not- for-profit purposes without prior permission or charge provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. · Quotations or similar reproductions must be sufficiently acknowledged. Please see our full end user licence at: http://eprints.nottingham.ac.uk/end_user_agreement.pdf A note on versions: The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. For more information, please contact [email protected] The effect of the polyadenylation inhibitor Cordycepin on MCF-7 cells Asma Khurshid, MSc (University of Nottingham) Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy July 2015 Declaration Except where acknowledged in the text, I declare that this dissertation is my own work and is based on research that was undertaken by me in the School of Pharmacy, Faculty of Science, University of Nottingham.
    [Show full text]
  • Cellular Uptake and Intracellular Phosphorylation of GS-441524: Implications for Its Effectiveness Against COVID-19
    viruses Review Cellular Uptake and Intracellular Phosphorylation of GS-441524: Implications for Its Effectiveness against COVID-19 Henrik Berg Rasmussen 1,2,*, Gesche Jürgens 3, Ragnar Thomsen 4 , Olivier Taboureau 5, Kornelius Zeth 2, Poul Erik Hansen 2 and Peter Riis Hansen 6 1 Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, DK-4000 Roskilde, Denmark 2 Department of Science and Environment, Roskilde University Center, DK-4000 Roskilde, Denmark; [email protected] (K.Z.); [email protected] (P.E.H.) 3 Clinical Pharmacology Unit, Zealand University Hospital, DK-4000 Roskilde, Denmark; [email protected] 4 Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; [email protected] 5 INSERM U1133, CNRS UMR 8251, Université de Paris, F-75013 Paris, France; [email protected] 6 Department of Cardiology, Herlev and Gentofte Hospital, DK-2900 Hellerup, Denmark; [email protected] * Correspondence: [email protected] Abstract: GS-441524 is an adenosine analog and the parent nucleoside of the prodrug remdesivir, which has received emergency approval for treatment of COVID-19. Recently, GS-441524 has been proposed to be effective in the treatment of COVID-19, perhaps even being superior to remdesivir for treatment of this disease. Evaluation of the clinical effectiveness of GS-441524 requires understanding Citation: Rasmussen, H.B.; Jürgens, of its uptake and intracellular conversion to GS-441524 triphosphate, the active antiviral substance. G.; Thomsen, R.; Taboureau, O.; Zeth, We here discuss the potential impact of these pharmacokinetic steps of GS-441524 on the formation K.; Hansen, P.E.; Hansen, P.R.
    [Show full text]
  • ( 12 ) United States Patent
    US010266485B2 (12 ) United States Patent (10 ) Patent No. : US 10 , 266 , 485 B2 Benenato ( 45 ) Date of Patent: * Apr. 23, 2019 ( 54 ) COMPOUNDS AND COMPOSITIONS FOR ( 2013. 01 ) ; C07C 227/ 16 (2013 . 01 ) ; C07C INTRACELLULAR DELIVERY OF 227/ 18 ( 2013 .01 ) ; C07C 229 / 16 (2013 . 01 ) ; THERAPEUTIC AGENTS C07C 233 / 36 ( 2013 .01 ) ; C07C 235 / 10 (2013 .01 ) ; C07C 255 /24 ( 2013 . 01 ) ; C07C (71 ) Applicant: Moderna TX , Inc ., Cambridge , MA 271/ 20 ( 2013 . 01 ) ; C07C 275 / 14 ( 2013 . 01 ) ; (US ) C07C 279 /12 ( 2013 .01 ) ; C07C 279 / 24 ( 2013 . 01 ) ; C07C 279 /28 ( 2013 .01 ) ; C07C ( 72 ) Inventor: Kerry E . Benenato , Sudbury , MA (US ) 279 / 32 ( 2013 . 01 ) ; C07C 311 / 05 ( 2013 . 01 ) ; C07C 335 / 08 (2013 . 01 ) ; C070 207 / 27 (73 ) Assignee : ModernaTX , Inc. , Cambridge, MA ( 2013 .01 ) ; CO7D 233 / 72 ( 2013 . 01 ) ; C07D (US ) 249 /04 (2013 .01 ) ; C07D 263 / 20 ( 2013 .01 ) ; C07D 265 / 33 ( 2013 .01 ) ; C07D 271 / 06 ( * ) Notice : Subject to any disclaimer, the term of this ( 2013 .01 ) ; C07D 271/ 10 (2013 .01 ) ; C07D patent is extended or adjusted under 35 277 / 38 ( 2013 . 01 ) ; C07F 9 / 091 ( 2013 .01 ) ; U . S . C . 154 ( b ) by 0 days . CO7K 14 /505 ( 2013. 01 ) ; A61K 9 /1271 This patent is subject to a terminal dis (2013 .01 ) ; A61K 48 / 00 ( 2013 .01 ) ; C07C claimer . 2601/ 02 (2017 .05 ) ; C07C 2601 / 04 ( 2017 . 05 ) ; C07C 2601/ 14 ( 2017 .05 ) ; C07C 2601 / 18 (21 ) Appl . No. : 16 / 005 , 286 (2017 . 05 ) (58 ) Field of Classification Search (22 ) Filed : Jun . 11 , 2018 CPC .. A61K 39 /00 ; A61K 51 /08 ; CO7K 14 /81 ; C07H 21 /00 (65 ) Prior Publication Data USPC .
    [Show full text]
  • Cordycepin Induces Apoptosis and Autophagy in Human Neuroblastoma SK‑N‑SH and BE(2)‑M17 Cells
    ONCOLOGY LETTERS 9: 2541-2547, 2015 Cordycepin induces apoptosis and autophagy in human neuroblastoma SK‑N‑SH and BE(2)‑M17 cells YIFAN LI1,2, RONG LI1, SHENGLANG ZHU3, RUYUN ZHOU4, LEI WANG1, JIHUI DU1, YONG WANG5, BEI ZHOU1 and LIWEN MAI1 1Central Laboratory; 2Shenzhen Key Lab of Endogenous Infection; Departments of 3Nephrology, 4Chinese Traditional Medicine Rheumatology and 5Gastroenterology, Affiliated Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China Received June 30, 2014; Accepted February 11, 2015 DOI: 10.3892/ol.2015.3066 Abstract. Cordycepin, also termed 3'-deoxyadenosine, is The prevalence of neuroblastoma is ~1 case in 7,000 live a derivative of the nucleoside adenosine that represents births (1-3). Approximately 40% of neuroblastoma patients a potential novel class of anticancer drugs targeting the present with a localized tumor, which appears as a large 3' untranslated region of RNAs. Cordycepin has been lump in the abdomen, pelvis, chest or neck, that may press reported to induce apoptosis in certain cancer cell lines, on other parts of the body (4). The disease exhibits extreme but the effects of cordycepin on human neuroblastoma cells heterogeneity, and is stratified into three risk categories, low, have not been studied. In the present study, an MTT assay intermediate and high risk (3). These risk catergories are revealed that cordycepin inhibits the viability of neuroblas- based on clinical and biological features, including MYCN toma SK-N-SH and BE(2)-M17 cells in a dose-dependent copy number, histopathology, tumor ploidy in infants, manner. In addition, cordycepin increases the early-apop- patient age and tumor stage [according to the International totic cell population of SK-N-SH cells, as determined by Neuroblastoma Staging System (5)] (3).
    [Show full text]
  • Cordycepin Nanoencapsulated in Poly(Lactic-Co- Glycolic Acid) Exhibits Better Cytotoxicity and Lower Hemotoxicity Than Free Drug
    Nanotechnology, Science and Applications Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Cordycepin Nanoencapsulated in Poly(Lactic-Co- Glycolic Acid) Exhibits Better Cytotoxicity and Lower Hemotoxicity Than Free Drug This article was published in the following Dove Press journal: Nanotechnology, Science and Applications – Gregory Marslin 1 3 Purpose: Cordycepin, a natural product isolated from the fungus Cordyceps militaris, is Vinoth Khandelwal4 a potential candidate for breast cancer therapy. However, due to its structural similarity with Gregory Franklin 5 adenosine, cordycepin is rapidly metabolized into an inactive form in the body, hindering its development as a therapeutic agent. In the present study, we have prepared cordycepin as 1School of Pharmacy, Sathyabama Institute of Science and Technology, nanoparticles in poly(lactic-co-glycolic acid) (PLGA) and compared their cellular uptake, Jeppiaar Nagar, Rajiv Gandhi Salai, cytotoxicity and hemolytic potential with free cordycepin. 2 Chennai 600119, India; Ratnam Institute Materials and Methods: Cordycepin-loaded PLGA nanoparticles (CPNPs) were prepared of Pharmacy and Research, Nellore, 524346, India; 3College of Biological by the double-emulsion solvent evaporation method. Physico-chemical characterization of Science and Engineering, Shaanxi the nanoparticles was done by zetasizer, transmission electron microscopy (TEM) and University of Technology, Hanzhong, reverse-phase high-pressure liquid chromatography (RP-HPLC) analyses.
    [Show full text]
  • Therapeutic Potential and Biological Applications of Cordycepin and Metabolic Mechanisms in Cordycepin-Producing Fungi
    Review Therapeutic Potential and Biological Applications of Cordycepin and Metabolic Mechanisms in Cordycepin-Producing Fungi Peng Qin 1, XiangKai Li 2, Hui Yang 1,3, Zhi-Ye Wang 1,3 and DengXue Lu 1,* 1 Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, Gansu Province, China; [email protected] (P.Q.); [email protected] (H.Y.); [email protected] (Z.-Y.W.) 2 Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China; [email protected] 3 Key Laboratory of Microbial Resources Exploition and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, LanZhou 730000, Gansu Province, China * Correspondence: [email protected]; Tel.: +86-931-8418216 Received: 5 May 2019; Accepted: 6 June 2019; Published: 14 June 2019 Abstract: Cordycepin(3′-deoxyadenosine), a cytotoxic nucleoside analogue found in Cordyceps militaris, has attracted much attention due to its therapeutic potential and biological value. Cordycepin interacts with multiple medicinal targets associated with cancer, tumor, inflammation, oxidant, polyadenylation of mRNA, etc. The investigation of the medicinal drug actions supports the discovery of novel targets and the development of new drugs to enhance the therapeutic potency and reduce toxicity. Cordycepin may be of great value owing to its medicinal potential as an external drug, such as in cosmeceutical, traumatic, antalgic and muscle strain applications. In addition, the biological application of cordycepin, for example, as a ligand, has been used to uncover molecular structures. Notably, studies that investigated the metabolic mechanisms of cordycepin-producing fungi have yielded significant information related to the biosynthesis of high levels of cordycepin.
    [Show full text]
  • New Insights Into Cordycepin Production in Cordyceps Militaris and Applications
    78 Editorial Commentary Page 1 of 3 New insights into cordycepin production in Cordyceps militaris and applications Sunita Chamyuang1,2, Amorn Owatworakit1,2, Yoichi Honda3 1School of Science, 2Microbial Products and Innovation Research Unit, Mae Fah Luang University, Chaing Rai, Thailand; 3Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan Correspondence to: Yoichi Honda. Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan. Email: [email protected]. Provenance: This is an invited article commissioned by the Section Editor Tao Wei, PhD (Principal Investigator, Assistant Professor, Microecologics Engineering Research Center of Guangdong Province in South China Agricultural University, Guangzhou, China). Comment on: Xia Y, Luo F, Shang Y, et al. Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell Chem Biol 2017;24:1479-89.e4. Submitted Mar 18, 2019. Accepted for publication Mar 31, 2019. doi: 10.21037/atm.2019.04.12 View this article at: http://dx.doi.org/10.21037/atm.2019.04.12 Cordycepin, 3’-deoxyadenosine, is a nucleoside analog research effort on improving cordycepin yield, which has of adenosine, which was first isolated in 1950 from focused on optimization of extraction methods, cultivation Cordyceps militaris. The compound possesses various conditions, strain improvement and biosynthesis pathway of biological activities including antitumor, anti-diabetic, cordycepin. immunomodulatory and anti-bacterial effects (1). The conventional extraction methods of cordycepin Cordycepin is considered a chemical marker for fungi from C. militaris fruiting bodies are water based or alcohol in the genus Cordyceps. Previous reports have postulated based. However ultrasonic-assisted extraction (5) or that cordycepin is one of the main active components in enzyme-assisted extraction (6) have also been attempted Ophiocordyceps sinensis (formerly C.
    [Show full text]
  • A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps Sinensis in Dongchongxiacao (冬蟲夏草 Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Traditional and Complementary Medicine Vo1. 3, No. 1, pp. 16-32 Copyright © 2013 Committee on Chinese Medicine and Pharmacy, Taiwan This is an open access article under the CC BY-NC-ND license. A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps sinensis in DongChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients Hui-Chen Lo1, Chienyan Hsieh2, Fang-Yi Lin3 and Tai-Hao Hsu3 1Department of Nutritional Science, Fu Jen Catholic University, Xinzhuang District, New Taipei City, Taiwan. 2Department of Biotechnology, National Kaohsiung Normal University, Yanchao Township, Kao-Hsiung County, Taiwan. 3Department of Medicinal Botanicals and Healthcare and Department of Bioindustry Technology, Da-Yeh University, Changhua, Taiwan. ABSTRACT The caterpillar fungus Ophiocordyceps sinensis (syn.† Cordyceps sinensis), which was originally used in traditional Tibetan and Chinese medicine, is called either “yartsa gunbu” or “DongChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo)” (“winter worm- summer grass”), respectively. The extremely high price of DongChongXiaCao, approximately USD $20,000 to 40,000 per kg, has led to it being regarded as “soft gold” in China. The multi-fungi hypothesis has been proposed for DongChongXiaCao; however, Hirsutella sinensis is the anamorph of O. sinensis. In Chinese, the meaning of “DongChongXiaCao” is different for O. ‡ ƒ sinensis, Cordyceps spp., and Cordyceps sp . Over 30 bioactivities, such as immunomodulatory, antitumor, anti-inflammatory, and antioxidant activities, have been reported for wild DongChongXiaCao and for the mycelia and culture supernatants of O. sinensis. These bioactivities derive from over 20 bioactive ingredients, mainly extracellular polysaccharides, intracellular polysaccharides, cordycepin, adenosine, mannitol, and sterols.
    [Show full text]