Whale Swimming in Rurutu

Total Page:16

File Type:pdf, Size:1020Kb

Whale Swimming in Rurutu Majestic Whale Encounters WHALE SWIMMING IN RURUTU Sep 16th-23rd Sep 23rd- 30th 2 0 2 2 J O I N U S Are you inspired to go somewhere that not many other people have been? Does an untouched paradise with very little tourists sound like your idea of heaven? We have found the perfect place for you! Rurutu is an idyllic little gem in the Austral Islands that combines a rugged and stunning landscape with our favourite activity...whale swimming! Join us on the most amazing adventure to Rurutu as we explore and discover what this amazing place has to offer. Swim with the Majestic humpback whales and other incredible sea creatures in crystal clear waters surrounding the island. Hike, climb and explore the fascinating limestone caves and spend your free time lazing about on the beautiful beaches. At Majestic Whale encounters our mission is to protect the W H Y U S ? world's oceans and all that's in it. We believe if you love the ocean it will love you back. We promote responsible whale watching and dolphin watching worldwide. We aim to run our trip with maximum interaction and minimal impact and we feel very honored to share this incredible experience with like minded people. As soon as you decide to join this epic journey, we are here for you every step of the way. We are a family run eco friendly business that prides ourselves on a high level of customer service and you can feel free to email us or call us with as many questions as you like. Besides a truly unforgettable trip, you will also make friends for life. MAJESTIC AWe always endeavour where possible to give back to the animals and the countries we are privledged to visit. By G I V E S B A C K choosing Majestic you can rest assured that you will be part of helping communities, the animals ad environments -as the countries we visit allow us into their homes, villages and lives... we take home a very special lifelong memory and new appreciation and leave a little behind in return For more information on our other projects, please click here..... Rurutu is the northern most island in the Austral archipelago of French Polynesia. It is situated 572 km (355 mi) south of Tahiti. Its land area is 32.7 km2 (12.6 sq mi) It is 10.8 km long and 5.3 km wide. Its highest point W H E R E I S (Manureva) is 389 m (1,276 ft) It has an estimated population of 2,466. RURUTU? Geologically, Rurutu was initially formed 12 million years ago by the Macdonald hotspot, a hotspot associated with the Macdonald seamount. Over the next 10 million years, erosion shrank the island until it was almost an atoll. Then, just over a million years ago, Rurutu passed over the Arago hotspot, which lifted it roughly 150 metres. Steep sea cliffs of ancient coral lifted by the event — called makatea — now largely encircle the island. These are riddled with caves filled with concretions. Rurutu is largely unique among islands in French Polynesia in that its historic inhabitants were cave-dwelling. In the months of August and October Rurutu also turns into a humpbackwhale nursery and breeding grounds where a lucky few people come to swim with the whales within the protection of the fringing reef and enjoy interacting with them without the crowds of Tahiti. Because Rurutu is endowed with a fringing reef, it has in recent W H Y D O T H E years become known for whale watching and swimming. Humpback whales come and give birth here between July and October within WHALES easy sighting distance from the beach. C O M E H E R E ? Because it does not have a lagoon, Rurutu can be approached easily from seaward. It is therefore a popular destination for humpback whales to come by each year to stop, rest and teach their calves before the big trip back to the Antarctic. The island has also managed to avoid all manner of pollution, including ocean noise. Tourism is minimal, making conditions perfect for these mammals. The water is also at a colder temperature in the Austral islands which the whales seem to prefer as a place to give birth. VAITUMU LODGE Vaitumu Village offers 7 traditional coral stone bungalows with private bathrooms. The young and dynamic team, native to the island, will share their daily life with you in a warm and friendly atmosphere. Enjoy the vast bar-restaurant area with free Wi-Fi and outdoor terrace, where you can admire spectacular sunsets and watch the whales go by, whilst enjoying tasty family cuisine based on local products. The only pool on the island is an added luxury, where you can relax after a day of sightseeing. THE LIMESTONE CAVES Rurutu is part of the Austral Islands and conceals an impressive geological characteristic – its limestone caves. About thirty caves are perched on top of Rurutu’s cliffs, overlooking the ocean and some of them offer a beautiful view of the vast horizon. Born from the erosion of the sea and the rain, these limestone cavities shelter surprising stalactites and stalagmites. The coral and volcanic walls of these caves scintillate in the light for your viewing pleasure. Beyond their geological interest, the majority of these natural monuments contain tales and legends related to the island and its inhabitants, their ancestors and origins. Part of Rurutu’s soul is secretly retained there and is revived by the storytellers of this troglodyte island. ITINERARY Day 1 Arrival - Everyone makes their own way to Rurutu where you will be transfered to the beautiful Vaitumu Lodge. As you drive around the winding roads, don't forget to look out the window for humpback whales. Day 2-7 Each day starts with a beautiful French/Rurutuan breakfast once we've had more to eat than you can manage we are then picked up for our day on the water with the whales! This tour includes 5 days of swimming with the beautiful humpback whales of Rurutu. We will be exploring the ocean and all it has to offer in the way of snorkeling, and then return for a beautiful smorgasbord lunch before our afternoon activities that will either include the limestone caves, Beach horse riding, cultural activities or simply relaxing with or without a cocktail! . Day 8 Unfortunately this will be your last day in paradise. You will be farewelled and transferred back to the airport to continue on to your next destination INCLUSIONS -7 nights accommodation in beautiful beachfront bungalows -5 days whale swimming with Humpback Whales fully guided -Limestone cave expereince With optional Beach Horseriding -Breakfast, lunch & Dinners -Transfers to and from airport WHAT TO EXPECT WHEN WHALE SWIMMING RESPECT FOR THE WHALES You will be spending 5 days out searching for humpback whales upon a custom built boat that will have a tour leader, a guide and a skipper. The whales tend to stay very close into the reef surrounding the island and so you will often spot their blow fairly easily especially on a calm day! Part of the fun is keeping a look out for whales. Once you have found them, we will then observe their behaviour to make sure it is safe for both the whale and the swimmers before quietly slipping into the water to join them for what will be a memory that will last you a lifetime. Please remember that they are wild animals so there is never a guarantee on what kind of experience you will have, but this is why we have 5 days, we want to give you the best chance possible to swim with these beautiful and often very interactive creatures. How many guests in total? MWE will be taking 8 guests in this once in a lifetime trip. FAQ'S Best time to travel to Rurutu? The Austral islands enjoy a cooler climate than their neighbours in Tahiti . Its a much more pleasant day temperature of approx 26 degrees during the whale season. With nights cooling down to allow for a better nights sleep. Days on the boat can get a little windy, though once back on land, you'll find it's a lovely temperature. September/October is the perfect time to be there if you would like to experience swimming with the Majestic South Pacific Humpback Whales which is why we have chosen these as the perfect months for MWE guests! Will we experience the local culture? Most definitely, you will have the chance to experience the exotic culture of ancient legends told through dancing and singing Rururtu also has various plantations... coffee, pineapple, wild basil and lychees abound around these rich lands. What kind of food will I eat? Rurutu has a very large French influence in their cooking which incorporates seasonal local foods. Baguetts can always be found as well as croissants and crepes for breakfast! FAQ'S They also offer many local Polynesian dishes making use of the abundant fish and exotic fruits, using delicate sauces made with homegrown vanilla and coconut. How will the humpback swims compare to Tonga? Both are incredible experiences. French Polynesia is known to have incredible water clarity. The operators we use have great respect for the whales and some of them even know them by name. In Rurutu, there are approximately 4 boats in operation on the whole island. There are generally more swimmers in the water with whales at one time than you would encounter in Tonga.
Recommended publications
  • Sixteenth Meeting of the GEBCO Sub-Committee on Undersea Feature Names (SCUFN) Met at the International Hydrographic Bureau, Monaco, Under the Chairmanship of Dr
    Distribution : limited IOC-IHO/GEBCO SCUFN-XV1/3 English only INTERGOVERNMENTAL INTERNATIONAL OCEANOGRAPHIC HYDROGRAPHIC COMMISSION (of UNESCO) ORGANIZATION International Hydrographic Bureau Monaco, 10-12 April 2003 SUMMARY REPORT IOC-IHO/GEBCO SCUFN-XVI/3 Page 2 Page intentionally left blank IOC-IHO/GEBCO SCUFN-XVI/3 Page 1 Notes: A list of acronyms, used in this report, is in Annex 3. An alphabetical index of all undersea feature names appearing in this report is in Annex 6. 1. INTRODUCTION – APPROVAL OF AGENDA The sixteenth meeting of the GEBCO Sub-Committee on Undersea Feature Names (SCUFN) met at the International Hydrographic Bureau, Monaco, under the Chairmanship of Dr. Robert L. FISHER, Scripps Institution of Oceanography (SIO), USA. Attendees were welcomed by Capt. Hugo GORZIGLIA, IHB Director. He mentioned that the IHB had invited IHO Member States to make experts available to SCUFN and was pleased to see new faces at this meeting. The meeting welcomed Dr. Hans-Werner SCHENKE (AWI, Germany), Mr. Kunikazu NISHIZAWA (Japan Hydrographic Department), Mrs. Lisa A. TAYLOR (NGDC, USA), Captain Vadim SOBOLEV (HDNO, Russian Federation) and Mr Norman CHERKIS (USA) as new members of SCUFN. The list of participants is in Annex 1. The draft agenda was approved without changes (see Annex 2). Mr. Desmond P.D. SCOTT kindly accepted to serve as Rapporteur for the meeting. 2. MATTERS REMAINING FROM PREVIOUS MEETINGS 2.1 From SCUFN-XIII (Dartmouth, Nova Scotia, Canada, June 1999) Ref: Doc. IOC-IHO/GEBCO SCUFN-XIII/3 2.1.1 Southwest Pacific region The following four features and names in this area, still pending, were reviewed: • Paragraph 3.1.5 - Proposed names for two seamounts located at (18°56’S – 169°27’W) and (19°31’S – 167°36’W) were still awaited from Dr Robin FALCONER, NIWA, New Zealand.
    [Show full text]
  • Neutrophilic Fe-Oxidizing Bacteria Are Abundant at the Loihi Seamount Hydrothermal Vents and Play a Major Role in Fe Oxide Deposition David Emerson
    Western Washington University Western CEDAR Biology Faculty and Staff ubP lications Biology 6-2002 Neutrophilic Fe-Oxidizing Bacteria are Abundant at the Loihi Seamount Hydrothermal Vents and Play a Major Role in Fe Oxide Deposition David Emerson Craig L. Moyer Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/biology_facpubs Part of the Biology Commons Recommended Citation Emerson, David and Moyer, Craig L., "Neutrophilic Fe-Oxidizing Bacteria are Abundant at the Loihi Seamount Hydrothermal Vents and Play a Major Role in Fe Oxide Deposition" (2002). Biology Faculty and Staff Publications. 17. https://cedar.wwu.edu/biology_facpubs/17 This Article is brought to you for free and open access by the Biology at Western CEDAR. It has been accepted for inclusion in Biology Faculty and Staff ubP lications by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, June 2002, p. 3085–3093 Vol. 68, No. 6 0099-2240/02/$04.00ϩ0 DOI: 10.1128/AEM.68.6.3085–3093.2002 Copyright © 2002, American Society for Microbiology. All Rights Reserved. Neutrophilic Fe-Oxidizing Bacteria Are Abundant at the Loihi Seamount Hydrothermal Vents and Play a Major Role in Fe Oxide Deposition David Emerson1* and Craig L. Moyer2 American Type Culture Collection, Manassas, Virginia 20110,1 and Department of Biology, Western Washington University, Bellingham, Washington2 Received 17 December 2001/Accepted 27 March 2002 A number of hydrothermal vent sites exist on the summit of the Loihi Seamount, a shield volcano that is part of the Hawaiian archipelago.
    [Show full text]
  • The Pitcairn Hotspot in the South Paci¢C: Distribution and Composition of Submarine Volcanic Sequences
    Available online at www.sciencedirect.com R Journal of Volcanology and Geothermal Research 121 (2003) 219^245 www.elsevier.com/locate/jvolgeores The Pitcairn hotspot in the South Paci¢c: distribution and composition of submarine volcanic sequences R. Hekinian a;Ã, J.L. Chemine¤e b, J. Dubois b, P. Sto¡ers a, S. Scott c, C. Guivel d, D. Garbe-Scho«nberg a, C. Devey e, B. Bourdon b, K. Lackschewitz e, G. McMurtry f , E. Le Drezen g a Universita«t Kiel, Institut fu«r Geowissenschaften, OlshausentraMe 40, 24098 Kiel, Germany b Institut de Physique du Globe de Paris, 4 Place Jussieu, 75252 Paris, France c Geology Department, University of Toronto, Toronto, ON, Canada M5S 3B1 d Universite¤ de Nantes, Faculte¤ des Sciences, 2 Rue de la Houssinie're, 92208 Nantes, France e University of Bremen, Geowissenschaften, Postfach 340440, 28334 Bremen, Germany f University of Hawaii, Department of Oceanography, 1000 Pope Road, Honolulu, HI 96822, USA g IFREMER Centre de Brest, Ge¤oscience Marine, 29280 Plouzane¤, France Received 19 March 2002; accepted 30 August 2002 Abstract Multibeam bathymetry and bottom imaging (Simrad EM12D) studies on an area of about 9500 km2 were conducted over the Pitcairn hotspot near 25‡10PS, 129‡ 20PW. In addition, 15 dives with the Nautile submersible enabled us to obtain ground-true observations and to sample volcanic structures on the ancient ocean crust of the Farallon Plate at 3500^4300 m depths. More than 100 submarine volcanoes overprint the ancient crust and are divided according to their size into large ( s 2000 m in height), intermediate (500^2000 m high) and small ( 6 500 m high) edifices.
    [Show full text]
  • THE HAWAIIAN-EMPEROR VOLCANIC CHAIN Part I Geologic Evolution
    VOLCANISM IN HAWAII Chapter 1 - .-............,. THE HAWAIIAN-EMPEROR VOLCANIC CHAIN Part I Geologic Evolution By David A. Clague and G. Brent Dalrymple ABSTRACT chain, the near-fixity of the hot spot, the chemistry and timing of The Hawaiian-Emperor volcanic chain stretches nearly the eruptions from individual volcanoes, and the detailed geom­ 6,000 km across the North Pacific Ocean and consists of at least etry of volcanism. None of the geophysical hypotheses pro­ t 07 individual volcanoes with a total volume of about 1 million posed to date are fully satisfactory. However, the existence of km3• The chain is age progressive with still-active volcanoes at the Hawaiian ewell suggests that hot spots are indeed hot. In the southeast end and 80-75-Ma volcanoes at the northwest addition, both geophysical and geochemical hypotheses suggest end. The bend between the Hawaiian and .Emperor Chains that primitive undegassed mantle material ascends beneath reflects a major change in Pacific plate motion at 43.1 ± 1.4 Ma Hawaii. Petrologic models suggest that this primitive material and probably was caused by collision of the Indian subcontinent reacts with the ocean lithosphere to produce the compositional into Eurasia and the resulting reorganization of oceanic spread­ range of Hawaiian lava. ing centers and initiation of subduction zones in the western Pacific. The volcanoes of the chain were erupted onto the floor of the Pacific Ocean without regard for the age or preexisting INTRODUCTION structure of the ocean crust. Hawaiian volcanoes erupt lava of distinct chemical com­ The Hawaiian Islands; the seamounts, hanks, and islands of positions during four major stages in their evolution and the Hawaiian Ridge; and the chain of Emperor Seamounts form an growth.
    [Show full text]
  • Lava Geochronology (Focusing on the Shorter Timescales)
    Week 4 – Lava Geochronology (focusing on the shorter timescales) Ultra high resolution methods for submarine eruption verification and within-eruption emplacement histories (weeks to months) Methods for determining eruption frequency, eruption sequences and repose history over multiple eruption cycles (decades to millennia) Observations of Deep Submarine eruptions Eruption Detection . Direct observation . Visual observation soon after the fact (happenstance) . seismic monitoring . T-phase = sound waves . Instruments stuck in a lava flow . water column signatures (particles, heat, gasses) Event Verification . how do I know if lava or tephra were emplaced on the seafloor?: take a picture, or collect a sample and 210Po date it Microbial mats and charred tubeworms at 9° 50’N in Apr-May 1991 new and old lava on the N. AlvinGorda Photos Ridge, WHOI GG 711, Fall 2011, Lect. 4 1 Eruption Age . 210Po- 210Pb dating (weeks to yrs resolution) . 210Pb- 226Ra dating (multiple yrs to decades) . 226Ra-230Th dating (multiple centuries resolution) . paleomagnetic intensity (decades to centuries resolution) Preparing a sample for 210Po- 210Pb analysis in the SOEST Isotope lab The list of known historical eruptions with (a) high resolution date and (b) identified lavas on the deep sea floor is small (most examples are in the table below) Event detection dating resolution Some references JdF Cleft Mounds 1985 Megaplumes Differential seabeam ± 2 years* Chadwick & Embley, 1991 17°S EPR 1990 serendipity Multiple (3He/Heat) ± 2 years* Auzende et al., 1996; Sinton et al., 2002 9°50’N EPR 1991-92 serendipity 210Po ± 2 mo. Haymon et al., 1993; Rubin et al., 1994 JdF CoAxial 1993 seismic seismic ± week* Dziak et al., 1995; Embley et al., 2000 N.
    [Show full text]
  • Temporal Evolution and Geochemical Variability of the South-Pacific Superplume Activity
    1/17 Temporal Evolution and Geochemical Variability of the South-Pacific Superplume Activity Alain Bonnevillea,*, Laure Dossob, Anthony Hildenbrandc a Institut de Physique du Globe de Paris / Centre National de la Recherche Scientifique 4, Place Jussieu, 75252 Paris Cedex 05, France b Centre National de la Recherche Scientifique UMR 6538 IFREMER, BP 70, 29280 Plouzané, France c Centre National de la Recherche Scientifique, Laboratoire Géochronologie, Université Paris-Sud, 91405 Orsay, France * Corresponding author. Tel. : +33 1 44 27 68 94; Fax : +33 1 44 27 99 69 ; E-mail : [email protected] Keywords : mantle plume, South Pacific Superswell, geochemical sources, seamount ages, Cook-Austral, hotspot Bonneville, A., L. Dosso and A. Hildenbrand, Temporal Evolution and Geochemical Variability of the South-Pacific Superplume Activity, Earth Plan. Sc. Letts, 244, 251-269, doi:10.1016/j.epsl.2005.12.037 , 2006. Received 24 November 2004; received in revised form 19 July 2005; accepted 7 December 2005 Available online 21 February 2006, Editor: B. Wood The South Pacific Superswell activity July 15th, 2005 2/17 Abstract We are presenting a new set of K/Ar ages and geochemical analyses obtained on deep-sea samples dredged in 1999 on several seamounts of the Cook-Austral volcanic chains in the Pacific Ocean. The new geochemical results, together with published data on island samples, allow us to reveal a time evolution of the mantle source composition as well as an increase in geochemical variability of the superplume responsible for the regional South Pacific Superswell. Three identified volcanic stages of 58-40 Ma, 33-20 Ma and 20-0 Ma are identified with signatures of mantle reservoir composition varying from close to C to N- MORB-types and C/HIMU-type respectively.
    [Show full text]
  • The Missing Hotspot Found in the Austral Islands
    Arago Seamount: The missing hotspot found in the Austral Islands Alain Bonneville Centre National de la Recherche Scienti®que, GeÂosciences Marines, Institut de Physique du Globe, 4 place Jussieu, Paris, France Raymond Le Suave Centre National de la Recherche Scienti®que, DeÂpartement de GeÂosciences Marines, Institut FrancËais de Recherche pour l'Exploitation de la Mer, BP 70, 29280 PlouzaneÂ, France Laurence Audin Universite Paul Sabatier, Institut de Recherche pour le DeÂveloppement, 38, rue des 36 Ponts, 31000, Toulouse, France ValeÂrie Clouard Universite de la PolyneÂsie FrancËaise, BP 6570, Faaa, Tahiti, French Polynesia Laure Dosso Centre National de la Recherche Scienti®que, DeÂpartement de GeÂosciences Marines, Institut FrancËais de Recherche pour l'Exploitation de la Mer, BP 70, 29280 PlouzaneÂ, France Pierre Yves Gillot Laboratoire GeÂochronologie, Sciences de la Terre, Universite Paris-Sud, 91405 Orsay, France Philip Janney Department of Geology, Field Museum of Natural History, Chicago, Illinois 60605, USA Kelsey Jordahl Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA Keitapu Maamaatuaiahutapu Universite de la PolyneÂsie FrancËaise, BP 6570, Faaa, Tahiti, French Polynesia ABSTRACT The Austral archipelago, on the western side of the South Paci®c superswell, is composed of several volcanic chains, corresponding to distinct events from 35 Ma to the present, and lies on oceanic crust created between 60 and 85 Ma. In 1982, Turner and Jarrard proposed that the two distinct volcanic stages found on Rurutu Island and dated as 12 Ma and 1 Ma could be due to two different hotspots, but no evidence of any recent aerial or submarine volcanic source has ever been found.
    [Show full text]
  • Telepresence-Enabled Exploration of The
    ! ! ! ! 2014 WORKSHOP TELEPRESENCE-ENABLED EXPLORATION OF THE !EASTERN PACIFIC OCEAN WHITE PAPER SUBMISSIONS ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! TABLE OF CONTENTS ! ! NORTHERN PACIFIC! Deep Hawaiian Slopes 7 Amy Baco-Taylor (Florida State University) USS Stickleback (SS-415) 9 Alexis Catsambis (Naval History and Heritage Command's Underwater Archaeology Branch) Sunken Battlefield of Midway 10 Alexis Catsambis (Naval History and Heritage Command's Underwater Archaeology Branch) Systematic Mapping of the California Continental Borderland from the Northern Channel Islands to Ensenada, Mexico 11 Jason Chaytor (USGS) Southern California Borderland 16 Marie-Helene Cormier (University of Rhode Island) Expanded Exploration of Approaches to Pearl Harbor and Seabed Impacts Off Oahu, Hawaii 20 James Delgado (NOAA ONMS Maritime Heritage Program) Gulf of the Farallones NMS Shipwrecks and Submerged Prehistoric Landscape 22 James Delgado (NOAA ONMS Maritime Heritage Program) USS Independence 24 James Delgado (NOAA ONMS Maritime Heritage Program) Battle of Midway Survey and Characterization of USS Yorktown 26 James Delgado (NOAA ONMS Maritime Heritage Program) Deep Oases: Seamounts and Food-Falls (Monterey Bay National Marine Sanctuary) 28 Andrew DeVogelaere (Monterey Bay National Marine Sanctuary) Lost Shipping Containers in the Deep: Trash, Time Capsules, Artificial Reefs, or Stepping Stones for Invasive Species? 31 Andrew DeVogelaere (Monterey Bay National Marine Sanctuary) Channel Islands Early Sites and Unmapped Wrecks 33 Lynn Dodd (University of Southern
    [Show full text]
  • K-Ar Ages of Some Volcanic Rocks from the Cook and Austral Islands
    K-Ar ages of some volcanic rocks from the Cook and Austral Islands G. BRENT DALRYMPLE U.S. Geological Survey, Menlo Park, California 94025 R. D. JARRARD* Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California 92037 D. A. CLAGUE* Geological Research Division, Scripps Institution of Oceanography, La Jolla, California 92037 ABSTRACT northwest and tend to be youngest at the ing of volcanoes in the chain seemed neces- east-southeast end. He suggested that these sary, both to confirm the reliability of pre- K-Ar age measurements on 19 volcanic chains were formed by relative motion be- vious K-Ar dating and to provide a stronger rocks from Rurutu, Mangaia, Rarotonga, tween the lithosphere and a hot spot (or test of the general melting-spot hypothesis. and Aitutaki in the Cook-Austral chain do melting spot) in the mantle. Morgan (1972) This paper presents the results of some ad- not show a systematic increase in the age of offered the hypothesis that these hot spots ditional K-Ar measurements and their im- the volcanoes to the west-northwest away were fixed, both relative to one another and plications for the origin of the Cook- from Macdonald Seamount as predicted by to the Earth's spin axis, and that they were Austral volcanic chain. the melting-spot hypothesis and suggested caused by mantle convection in the form of Age measurements were by the conven- by geomorphic evidence. Ages determined narrow plumes that brought material up- tional K-Ar method with the use of previ- for alkalic basalt samples from Rurutu ward from near the core-mantle boundary.
    [Show full text]
  • Structural Trends in the Southern Cook and Austral Archipelagoes (South Central Pacific) Based on an Analysis of SEASAT Data: I I Geodynamic Implications I ~I M
    , Eurrli and Planetary Science Letters, 85 (1987) 427-438 427 Il Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands a Structural trends in the Southern Cook and Austral archipelagoes (South Central Pacific) based on an analysis of SEASAT data: I I geodynamic implications I ~i M. Diament and N. Baudry ‘i2 I ’ Laboratoire de Géopliysique (UA. du C.N.R.S. 730), Bâtiment 509, Universile Paris-Stid, 91405 Orsuy Cédcx (Frunce) I ORSTOM, B.P. AS, Nounieu Cédex (New Ccdedoniu) Received December 22,1986; revised version acceptedJuly 10,1987 I Filtered SEASAT data have been interpreted in ‘an area covering the Cook-‘Austral archipelagoes (South Central Pacific) in order to detect or confirm the existence of structural directions. SEABEAM data recorded by N/O “Jean Charcot” were also interpreted. Additionally to the Austral fracture zone and Cook-Austral archipelagoes trends, the SEASAT data reveal the existence of two directions, the azimuths of which are N150 O and N95 O respectively. The I first, which intersects the Austral archipelago close to the island of Maria corresponds to a long linear topographic bump. It is interpreted as evidence for the existence of an ancient hot spot with a trace copolar to the Emperor chain. This result explains the very important thermal rejuvenation found previously in that area by several authors. It also I explains the very disturbed ages and morphologies of volcanic structures recorded in the Austral archipelago. The I second direction, located south of the Cook archipelago is underlined by geoid signatures of fracture zone type. These postulated linear features are probably of similar origin to the ones detected previously farther east.
    [Show full text]
  • Young Tracks of Hotspots and Current Plate Velocities
    Geophys. J. Int. (2002) 150, 321–361 Young tracks of hotspots and current plate velocities Alice E. Gripp1,∗ and Richard G. Gordon2 1Department of Geological Sciences, University of Oregon, Eugene, OR 97401, USA 2Department of Earth Science MS-126, Rice University, Houston, TX 77005, USA. E-mail: [email protected] Accepted 2001 October 5. Received 2001 October 5; in original form 2000 December 20 SUMMARY Plate motions relative to the hotspots over the past 4 to 7 Myr are investigated with a goal of determining the shortest time interval over which reliable volcanic propagation rates and segment trends can be estimated. The rate and trend uncertainties are objectively determined from the dispersion of volcano age and of volcano location and are used to test the mutual consistency of the trends and rates. Ten hotspot data sets are constructed from overlapping time intervals with various durations and starting times. Our preferred hotspot data set, HS3, consists of two volcanic propagation rates and eleven segment trends from four plates. It averages plate motion over the past ≈5.8 Myr, which is almost twice the length of time (3.2 Myr) over which the NUVEL-1A global set of relative plate angular velocities is estimated. HS3-NUVEL1A, our preferred set of angular velocities of 15 plates relative to the hotspots, was constructed from the HS3 data set while constraining the relative plate angular velocities to consistency with NUVEL-1A. No hotspots are in significant relative motion, but the 95 per cent confidence limit on motion is typically ±20 to ±40 km Myr−1 and ranges up to ±145 km Myr−1.
    [Show full text]
  • Subducted and Recycled Lithosphere As the Mantle Source of Ocean Island Basalts from Southern Polynesia, Central Pacific
    Chemical Geology, 77 (1989) 1-18 1 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands Subducted and recycled lithosphere as the mantle - source of ocean island basalts from southern Polynesia, I central Pacific C. DUPUYl, H.G. BARSCZUS”’, J. DOSTAL3, P. VIDAL4 and J.-M. LIOTARD’ ‘Centre Géologique et Géophysique, C.N.R.S. et Université des Sciences et Techniques du Languedoc, F-34060 Montpellier Cédex (France) ‘Centre ORSTOM de Tahiti, Papeete (French Polynesia) 3Department of Geology, Saint Mary’s University, Halifax, N.S. B3H 3C3 (Canada) 4UA 10 C.N.R.S. et Université, F-63018 Clermont-Ferrand Cédex (France) (Received October 13,1988; revised and accepted April 4,1989) Abstract Dupuy, C., Barsczus, H.G., Dostal, J., Vidal, P. and Liotard, J.-M., 1989. Subducted and recycled lithosphere as the mantle source of ocean island basalts from southern Polynesia, central Pacific. Chem. Geol., 77: 1-18. The Marquesas, Society and Austral-Cook Islands, three volcanic chains in the central Pacific Ocean (French Polynesia), are composed mainly of alkali basalts, basanites and tholeiites, which have geochemical characteristics typical of ocean island basalts. The lavas from the Marquesas and Society Islands display generally chondritic ratios of highly incompatible trace elements and have higher s7Sr/s6Srthan the basalts from the Austral-Cook Islands which have many trace-element ratios similar to those of mid-ocean ridge basalts. This grouping probably reflects differences in the composition of an ancient subducted and recycled lithosphere incorporated into the mantle source of the Po- lynesian basalts. Compared to Marquesas and Society Islands basalts, the mantle source of the Austral-Cook Islands basalts contains refractory oceanic lithosphere from which a larger amount of basaltic melt was extracted during subduction.
    [Show full text]