1/17 Temporal Evolution and Geochemical Variability of the South-Pacific Superplume Activity Alain Bonnevillea,*, Laure Dossob, Anthony Hildenbrandc a Institut de Physique du Globe de Paris / Centre National de la Recherche Scientifique 4, Place Jussieu, 75252 Paris Cedex 05, France b Centre National de la Recherche Scientifique UMR 6538 IFREMER, BP 70, 29280 Plouzané, France c Centre National de la Recherche Scientifique, Laboratoire Géochronologie, Université Paris-Sud, 91405 Orsay, France * Corresponding author. Tel. : +33 1 44 27 68 94; Fax : +33 1 44 27 99 69 ; E-mail :
[email protected] Keywords : mantle plume, South Pacific Superswell, geochemical sources, seamount ages, Cook-Austral, hotspot Bonneville, A., L. Dosso and A. Hildenbrand, Temporal Evolution and Geochemical Variability of the South-Pacific Superplume Activity, Earth Plan. Sc. Letts, 244, 251-269, doi:10.1016/j.epsl.2005.12.037 , 2006. Received 24 November 2004; received in revised form 19 July 2005; accepted 7 December 2005 Available online 21 February 2006, Editor: B. Wood The South Pacific Superswell activity July 15th, 2005 2/17 Abstract We are presenting a new set of K/Ar ages and geochemical analyses obtained on deep-sea samples dredged in 1999 on several seamounts of the Cook-Austral volcanic chains in the Pacific Ocean. The new geochemical results, together with published data on island samples, allow us to reveal a time evolution of the mantle source composition as well as an increase in geochemical variability of the superplume responsible for the regional South Pacific Superswell. Three identified volcanic stages of 58-40 Ma, 33-20 Ma and 20-0 Ma are identified with signatures of mantle reservoir composition varying from close to C to N- MORB-types and C/HIMU-type respectively.