ON HELİCES AND BERTRAND CURVES IN EUCLİDEAN 3-SPACE Murat Babaarslan Department of Mathematics, Faculty of Science and Arts Bozok University, Yozgat, Turkey
[email protected] Yusuf Yaylı Department of Mathematics, Faculty of Science Ankara University, Tandoğan, Ankara, Turkey
[email protected] Abstract- In this article, we investigate Bertrand curves corresponding to spherical images of the tangent indicatrix, binormal indicatrix, principal normal indicatrix and Darboux indicatrix of a space curve in Euclidean 3-space. As a result, in case of a space curve is general helix, we show that curve corresponding to spherical images of its tangent indicatrix and binormal indicatrix are circular helices and Bertrand curves. Similarly, in case of a space curve is slant helix, we demonstrate that the curve corresponding to spherical image of its principal normal indicatrix is circular helix and Bertrand curve. Key Words- Helix, Bertrand curve, Spherical Images 1. INTRODUCTION In the differential geometry of a regular curve in Euclidean 3-space E3 , it is well known that, one of the important problems is characterization of a regular curve. The curvature and the torsion of a regular curve play an important role to determine the shape and size of the curve 1,2. Natural scientists have long held a fascination, sometimes bordering on mystical obsession for helical structures in nature. Helices arise in nanosprings, carbon nonotubes, helices, DNA double and collagen triple helix, the double helix shape is commonly associated with DNA, since the double helix is structure of DNA 3 . This fact was published for the first time by Watson and Crick in 1953 4.