Eutectic Explosives Containing Ammonium Nitrate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Field-Based Analytical Methods for Explosive Compounds
Field-Based Analytical Methods for Explosive Compounds Dr. Thomas F. Jenkins Marianne E. Walsh USA Engineer Research and Development Center– Cold Regions Research and Engineering Laboratory 72 Lyme Road, Hanover NH 03755 603-646-4385 (FAX-4785) [email protected] [email protected] 1 1 Outline of Presentation • Important properties of nitroaromatic (TNT) and nitramine (RDX) explosives • Accepted laboratory methods for explosives chemicals • Detection criteria for explosives-related chemicals • Why should you consider using on-site methods? • Sampling considerations for explosives in soil and water • Verified methods for on-site determination of explosives in soil and water • Advantages / disadvantages of various on-site methods 2 Overview of topics to be covered in the presentation. 2 ***Safety*** • Chunks of high explosives often found at contaminated sites • Concentrations of TNT or RDX in soil greater than 12% are reactive (can propagate a detonation)* • Neither chunks nor soil with concentrations of TNT and RDX greater than 10% can be shipped off site using normal shipping procedures *Kristoff et al. 1987 3 The most important property of all is the ability of these compounds to detonate if they are subjected to the right type of stimulus (spark, shock). This is one of the major reasons why on-site analysis is so important for explosives. Kristoff, F.T., T.W. Ewing and D.E. Johnson (1987) Testing to Determine Relationship Between Explosive Contaminated Sludge Components and Reactivity. USATHAMA Report No. AMXTH-TE-CR-86096, -
The Russian Job
The Russian Job The rise to power of the Federal Security Service of the Russian Federation “We did not reject our past. We said honestly: The history of the Lubyanka in the twentieth century is our history…” ~ Nikolai Platonovich Patrushev, Director of the FSB Between August-September 1999, a series of explosions in Russia killed 293 people: - 1 person dead from a shopping centre explosion in Moscow (31 st August) - 62 people dead from an apartment bombing in Buynaksk (4 th September) - 94 people dead from an apartment bombing in Moscow (9th September) - 119 people dead from an apartment bombing in Moscow (13 th September) - 17 people dead from an apartment bombing in Volgodonsk (16 th September) The FSB (Federal Security Service) which, since the fall of Communism, replaced the defunct KGB (Committee for State Security) laid the blame on Chechen warlords for the blasts; namely on Ibn al-Khattab, Shamil Basayev and Achemez Gochiyaev. None of them has thus far claimed responsibility, nor has any evidence implicating them of any involvement been presented. Russian citizens even cast doubt on the accusations levelled at Chechnya, for various reasons: Not in living memory had Chechen militias pulled off such an elaborated string of bombings, causing so much carnage. A terrorist plot on such a scale would have necessitated several months of thorough planning and preparation to put through. Hence the reason why people suspected it had been carried out by professionals. More unusual was the motive, or lack of, for Chechens to attack Russia. Chechnya’s territorial dispute with Russia predates the Soviet Union to 1858. -
Toxicological Profile For
RDX 107 6. POTENTIAL FOR HUMAN EXPOSURE 6.1 OVERVIEW RDX has been identified at 31 out of the 1,699 hazardous waste sites that have been proposed for inclusion on the EPA National Priorities List (NPL) (HazDat 2007). However, the number of sites evaluated for RDX is not known. The frequency of these sites can be seen in Figure 6-1. RDX is a military explosive produced by the nitrolysis of hexamine with nitric acid (Boileau et al. 2009). It is a synthetic compound and is not known to exist in nature. Effluents and emissions from ammunition plants are responsible for the release of RDX into the environment (Pennington and Brannon 2002; U.S. Army 1984a). RDX is expected to exist as a particulate in the atmosphere. When released to water, RDX is subject to photolysis (half-life of 9–13 hours). Photoproducts include formaldehyde and nitrosamines (U.S. Army 1980a). Alkaline hydrolysis can also occur (Balakrishnan et al. 2003; Heilmann et al. 1996). RDX undergoes biodegradation in water and soil under anaerobic conditions (Funk et al. 1993; Pennington and Brannon 2002; U.S. Army 1984f). Its biodegradation products include MNX; DNX; TNX; hydrazine; 1,1-dimethyl-hydrazine, 1,2-dimethyl-hydrazine; formaldehyde; and methanol (McCormick et al. 1981). RDX is mobile in soil, and can leach into groundwater (U.S. Army 1980c), and can be transported from soils or water to terrestrial and aquatic plants (Best et al. 1999; Harvey et al. 1991, 1997; Pennington and Brannon 2002; Simini and Checkai 1996). RDX has been identified in environmental samples, primarily near army munition depots (Bishop et al. -
Trinitrobenzene
doi: 10.5028/jatm.2011.03010411 Gilson da Silva* National Industrial Property Institute Synthesis of 2,4,6-triamino-1,3,5- Rio de Janeiro – Brazil [email protected] trinitrobenzene Elizabeth da Costa Mattos Abstract: The 2,4,6-triamino-1,3,5-trinitrobenzene (TATB) is perhaps the Institute of Aeronautics and Space most thermostable and insensitive explosive known. Its low sensibility to São José dos Campos – Brazil shock makes it suitable for military and civil applications. TATB application [email protected] is done either alone or in combination with another high energetic material. This study aimed at reporting the review about many processes to produce *author for correspondence TATB and the problems associated with them, as well as suggest techniques like Fourier Transform Infrared Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC), which can be useful in the characterization of this energetic compound. Keywords: TATB, Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry, Plastic-bonded explosive. LIST OF SYMBOLS impact hazards is important. Other potential applications include the use of TATB as the booster or main charge TATB 2,4,6-triamino-1,3,5-trinitrobenzene explosives for down-hole oil perforation at elevated HE high explosive temperature surroundings (Lee, 1996). PBX plastic-bonded explosive HMX octogen TATB is a high explosive (HE) that can be combined with plastic binder to produce a plastic-bonded explosive RDX hexogen (PBX) composition, which is heat-resistant and highly TCB 1,3,5-trichlorobenzene insensitive. It is insoluble in organic solvents and has a TCTNB 1,3,5-trichloro-2,4,6-trinitrobenzene melting point above 400oC. -
Chapter 2 EXPLOSIVES
Chapter 2 EXPLOSIVES This chapter classifies commercial blasting compounds according to their explosive class and type. Initiating devices are listed and described as well. Military explosives are treated separately. The ingredi- ents and more significant properties of each explosive are tabulated and briefly discussed. Data are sum- marized from various handbooks, textbooks, and manufacturers’ technical data sheets. THEORY OF EXPLOSIVES In general, an explosive has four basic characteristics: (1) It is a chemical compound or mixture ignited by heat, shock, impact, friction, or a combination of these conditions; (2) Upon ignition, it decom- poses rapidly in a detonation; (3) There is a rapid release of heat and large quantities of high-pressure gases that expand rapidly with sufficient force to overcome confining forces; and (4) The energy released by the detonation of explosives produces four basic effects; (a) rock fragmentation; (b) rock displacement; (c) ground vibration; and (d) air blast. A general theory of explosives is that the detonation of the explosives charge causes a high-velocity shock wave and a tremendous release of gas. The shock wave cracks and crushes the rock near the explosives and creates thousands of cracks in the rock. These cracks are then filled with the expanding gases. The gases continue to fill and expand the cracks until the gas pressure is too weak to expand the cracks any further, or are vented from the rock. The ingredients in explosives manufactured are classified as: Explosive bases. An explosive base is a solid or a liquid which, upon application or heat or shock, breaks down very rapidly into gaseous products, with an accompanying release of heat energy. -
The Role of Product Composition in Determining Detonation Velocity
The Role of Product Composition in Determining Detonation Velocity... 459 Central European Journal of Energetic Materials, 2014, 11(4), 459-474 ISSN 2353-1843 The Role of Product Composition in Determining Detonation Velocity and Detonation Pressure Peter POLITZER*, Jane S. MURRAY Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA *E-mail: [email protected] Abstract: Four sets of rules for predicting the detonation product compositions of explosives have been investigated: the Kamlet-Jacobs, the Kistiakowsky- Wilson, the modified Kistiakowsky-Wilson and the Springall-Roberts. These can result, for a given compound, in significantly differing detonation products and amounts of heat release. However the resulting detonation velocities D and detonation pressures P obtained for the compound using the Kamlet-Jacobs equations are generally quite similar, with the Kamlet-Jacobs rules leading to the D and P that are, on average, closest to the experimental. The fact that the variations among the D and P values are relatively small can be attributed to a balancing of opposing effects relating to the quantities of gaseous products and the heat releases. Accordingly, obtaining reasonable accuracy for D and P does not necessarily imply corresponding accuracy for the product composition and heat release that were used. The analysis presented explains the observations that D and P can be correlated with loading density alone, even though product compositions are known to change with density. Keywords: detonation velocity, detonation pressure, density, detonation product composition, detonation heat release 1 Detonation Performance Two key criteria for evaluating explosives are detonation velocity (D) – the stable velocity of the shock front that characterizes detonation – and detonation pressure (P) – the stable pressure that is developed behind the front [1-6]. -
Redalyc.Synthesis of 2,4,6-Triamino-1,3,5-Trinitrobenzene
Journal of Aerospace Technology and Management ISSN: 1948-9648 [email protected] Instituto de Aeronáutica e Espaço Brasil da Silva, Gilson; da Costa Mattos, Elizabeth Synthesis of 2,4,6-triamino-1,3,5-trinitrobenzene Journal of Aerospace Technology and Management, vol. 3, núm. 1, enero-abril, 2011, pp. 65-72 Instituto de Aeronáutica e Espaço São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=309426555007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative doi: 10.5028/jatm.2011.03010411 Gilson da Silva* National Industrial Property Institute Synthesis of 2,4,6-triamino-1,3,5- Rio de Janeiro – Brazil [email protected] trinitrobenzene Elizabeth da Costa Mattos Abstract: The 2,4,6-triamino-1,3,5-trinitrobenzene (TATB) is perhaps the Institute of Aeronautics and Space most thermostable and insensitive explosive known. Its low sensibility to São José dos Campos – Brazil shock makes it suitable for military and civil applications. TATB application [email protected] is done either alone or in combination with another high energetic material. This study aimed at reporting the review about many processes to produce *author for correspondence TATB and the problems associated with them, as well as suggest techniques like Fourier Transform Infrared Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC), which can be useful in the characterization of this energetic compound. Keywords: TATB, Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry, Plastic-bonded explosive. -
@RGANI~TK)Iw Profrle~Iiiiiiiiiiiiimfi~Lrlll'
Through fundamental and applied research in explosives and testing technol- ogy, the Dynamic Testing (M) Division contributes to Los Alamos National Laboratory’s national security programs and makes its expertise available to the nation’s defense community. All aspects of explosives research and develop- ment, including the development of test diagnostic procedures and equipment, are the responsibility of M Division. These activities include the detailed measurement, analysis, and under- standing of hydrodynamic systems. Current Division research includes studying the behavior of explosives at the molecular level, synthesizing new organic explosives, formulating and characterizing new insensitive explosive compounds, and studying explosive reaction rates and incorporating them into complex compu- tational models. Division research also includes studying the physics of shock- wave interactions and the behavior of materials at extremely high pressures and temperatures, developing new dynamic testing equipment and procedures, using explosives to produce electrical energy, and developing a variety of advanced conven- Synthesis of new explosive mo[ecules may lead to materials with increased resistance tional munitions. Division scientists carry to accidental explosion. out their work through theoretkid studies supported by computational models combined with detailed experiments that pioneered the use of insensitive high ex- researchers continue to study the com- employ the most sophisticated diagnostic plosives, which dramatically increase patibility of materials in long-term storage equipment available. safety during handling and transportation and continue to develop new materials for Among M Division personnel are and redum the likelihood of nuclear mate- weapon components. chemists, engineers, and physicists, sup- rial dispersal from a weapon accident. Through testing, M Division con- ported by a variety of technicians and Most modem weapons are designed to in- firmed theories that a reaction strongly others. -
NUCLEAR WEAPONS: Additional Actions Could Help Improve
United States Government Accountability Office Report to Congressional Committees June 2019 NUCLEAR WEAPONS Additional Actions Could Help Improve Management of Activities Involving Explosive Materials GAO-19-449 June 2019 NUCLEAR WEAPONS Additional Actions Could Help Improve Management of Activities Involving Explosive Materials Highlights of GAO-19-449, a report to congressional committees Why GAO Did This Study What GAO Found NNSA is responsible for the Five National Nuclear Security Administration (NNSA) contractor-operated sites management and security of the U.S. conduct activities to design and produce explosive materials. There are about nuclear stockpile. NNSA has ongoing 100 different nuclear weapon components that contain explosive materials (see and planned efforts to modernize figure). Each site assumes primary responsibility for certain activities, but most nearly all of the weapons in the activities require collaboration by multiple sites, according to NNSA officials and stockpile, which require new explosive contractor representatives. In 2018, NNSA began adopting a centralized components. The production of some approach to managing these activities and coordinating them across its sites. key explosives ceased in the early 1990s, and much of the infrastructure Key Explosive-Containing Components in a Generic Nuclear Weapon supporting this work is aging, making it expensive and difficult to maintain. The Senate Report accompanying a bill for the National Defense Authorization Act for Fiscal Year 2018 included a provision for GAO to review NNSA’s high explosive capabilities specific to nuclear weapons. This report examines (1) explosives activities that NNSA and its sites conduct and how NNSA manages them; (2) challenges NNSA officials and contractor representatives Notes: Symbols do not show actual designs. -
IN the SUPREME COURT of INDIA CRIMINAL ORIGINAL JURISDICTION WRIT PETITION (CRL) NO. of 2019 in the MATTER OF: Vineet Dhand
Bar & Bench (www.barandbench.com) IN THE SUPREME COURT OF INDIA CRIMINAL ORIGINAL JURISDICTION WRIT PETITION (CRL) NO. OF 2019 IN THE MATTER OF: Vineet Dhanda Petitioner VERSUS Union of India &Ors. Respondents PAPER BOOK [FOR INDEX KINDLY SEE INSIDE] DR. J.P.DHANDA: ADVOCATE FOR THE PETITIONER Bar & Bench (www.barandbench.com) INDEX Sl. Particulars of Document Page No. of Part to Rema No. which it belongs rks Part 1 Part II (Contents (Contents of Paper of file Book) alone) (i) (ii) (iii) (iv) (v) 1. Court Fees 2. Listing Proforma A-A1 A-A1 3. Cover Page of Paper Book A-3 4. Index of Record of A-4 Proceedings 5. Limitation Report prepared A-5 by the Registry 6. Defect List A-6 7. Note Sheet NS1 to 8. List of Dates B-Z 9. Writ Petition with Affidavit 1-59 10. Annexure P-1: 60-62 A copy of the news article dated 26.11.2012 published in Rediff News.com 11. Annexure P-2: 63-67 A copy of the news article of Times of India dated 10.08.2015 Bar & Bench (www.barandbench.com) 12. Annexure P-3: 68-77 A copy of the detailed Wikipedia regarding the Uri attack dt. Nil 2016 13. Annexure P-4: 78-87 A copy of the detailed Wikipedia regarding the All Partied Hurriyat Conference dt. Nil 14. Annexure P-5: 88-90 A copy of the news article published in Business Standard dated 29.11.2017 15. Annexure P-6: 91-95 A copy of the news article published Press Trust of India dated nil January 2018 16. -
Studies on NTO-, FOX-7- and DNAN-Based Melt Cast Formulations
Central European Journal of Energetic Materials ISSN 1733-7178; e-ISSN 2353-1843 Copyright © 2017 Institute of Industrial Organic Chemistry, Poland Cent. Eur. J. Energ. Mater. 2017, 14(2): 1-15 (These page numbers will be altered); DOI: 10.22211/cejem/69397 Studies on NTO-, FOX-7- and DNAN-based Melt Cast Formulations Vijaya S. Mishra,* Subbaraidu R. Vadali, Auodeshkumar L. Bhagat, Rakesh K. Garg, Varsha M. Kugaonkar, Subramanian Raman, Rabindra K. Sinha, Shrinandan Asthana High Energy Materials Research Laboratory Sutarwadi, Pune-411 021, India *E-mail: [email protected] Abstract: In the present paper, 2,4-dinitroanisole (DNAN) has been evaluated as a melt cast explosive in comparison to the widely used 2,4,6-trinitrotoluene (TNT). The detonation failure diameter of a bare DNAN charge is greater than 100 mm and about 44 mm with 1.5 mm steel confinement. Comparative studies of two sets of formulations were carried out. The first set comprised formulations containing 60% of NTO, FOX-7, HMX or RDX and 40% of DNAN or TNT. The second set comprised formulations containing 30% of NTO, FOX-7, TATB or RDX and 70% of DNAN or TNT. The studies were mainly concentrated on characterization of the formulations, which included determination of the sensitivity parameters and the velocity of detonation (VOD). The study confirmed that DNAN and DNAN- based formulations are relatively insensitive compared to TNT and the analogous TNT-based formulations respectively. The rate of the detonation reaction of DNAN is enhanced in the presence of the high energy ingredients RDX, HMX, FOX-7 and NTO to varying degrees. -
Effect of Solid Additives on the Rheological Property
Appl. Rheol. 2020; 30:14–26 Research Article Le Qi, Zhongliang Ma*, Jiahao Liang, and Zhongliang Xiao Effect of Solid Additives on the Rheological Property of Nitroglycerin Plasticized Nitrocellulose https://doi.org/10.1515/arh-2020-0002 equations will form a contribution to the research on ex- Received Jul 02, 2019; accepted Feb 21, 2020 trusion process of this energetic material containing Cy- clotrimethylenetrinitramine (RDX) and graphene, and the Abstract: The rheological properties of energetic materials results obtained by this research have certain practical sig- comprising nitroglycerin plasticized nitrocellulose were nificance of the extrusion process for this energetic mate- studied using rheological tests in a parallel plate rheome- rial. ter. The Carreau-Yasuda equation was applied to calcu- late the zero-shear viscosity, and the dependence of solid Keywords: Rheometer, Zero-shear viscosity (ZSV), Viscous additives, temperature and solvent content on zero-shear flow activation energy, Carreau-Yasuda equation, master viscosity was developed. One can study flow character- curve istics of the energetic materials by observing the zero- shear viscosity instead of the effect of solid additives, tem- perature and solvent content. Additionally, the relation- ship between zero-shear viscosity and additives concen- 1 Introduction tration was studied. The Kissinger-Akahira-Sunose (KAS) Energetic materials can be defined as metastable materi- method was used to obtain the viscous flow activation als with high energy density containing a high amount of energy, and the equation to describe the relationship be- stored chemical energy that can be released. Nitrocellulose tween solid additives concentration and viscous flow ac- (NC) is an important energetic material for some specific tivation energy was represented.