Invasiveness of Some Biological Control Insects and Adequacy of Their Ecological Risk Assessment and Regulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thistles of Colorado
Thistles of Colorado About This Guide Identification and Management Guide Many individuals, organizations and agencies from throughout the state (acknowledgements on inside back cover) contributed ideas, content, photos, plant descriptions, management information and printing support toward the completion of this guide. Mountain thistle (Cirsium scopulorum) growing above timberline Casey Cisneros, Tim D’Amato and the Larimer County Department of Natural Resources Weed District collected, compiled and edited information, content and photos for this guide. Produced by the We welcome your comments, corrections, suggestions, and high Larimer County quality photos. If you would like to contribute to future editions, please contact the Larimer County Weed District at 970-498- Weed District 5769 or email [email protected] or [email protected]. Front cover photo of Cirsium eatonii var. hesperium by Janis Huggins Partners in Land Stewardship 2nd Edition 1 2 Table of Contents Introduction 4 Introduction Native Thistles (Pages 6-20) Barneyby’s Thistle (Cirsium barnebyi) 6 Cainville Thistle (Cirsium clacareum) 6 Native thistles are dispersed broadly Eaton’s Thistle (Cirsium eatonii) 8 across many Colorado ecosystems. Individual species occupy niches from Elk or Meadow Thistle (Cirsium scariosum) 8 3,500 feet to above timberline. These Flodman’s Thistle (Cirsium flodmanii) 10 plants are valuable to pollinators, seed Fringed or Fish Lake Thistle (Cirsium 10 feeders, browsing wildlife and to the centaureae or C. clavatum var. beauty and diversity of our native plant americanum) communities. Some non-native species Mountain Thistle (Cirsium scopulorum) 12 have become an invasive threat to New Mexico Thistle (Cirsium 12 agriculture and natural areas. For this reason, native and non-native thistles neomexicanum) alike are often pulled, mowed, clipped or Ousterhout’s or Aspen Thistle (Cirsium 14 sprayed indiscriminately. -
Development of Biological Agents for Invasive Species Control 6
MD-13-SP009B4T Martin O’Malley, Governor Darrell B. Mobley, Acting Secretary Anthony G. Brown, Lt. Governor Melinda B. Peters, Administrator STATE HIGHWAY ADMINISTRATION RESEARCH REPORT DEVELOPMENT OF BENEFICIAL BIOLOGICAL AGENTS FOR INVASIVE SPECIES CONTROL ROBERT B. TRUMBULE MARYLAND DEPARTMENT OF AGRICULTURE SP009B4T FINAL REPORT May 2013 The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Maryland State Highway Administration. This report does not constitute a standard, specification, or regulation. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. MD-13-SP009B4T 4. Title and Subtitle 5. Report Date May 2013 Development of Biological Agents for Invasive Species Control 6. Performing Organization Code 7. Author/s 8. Performing Organization Report No. Robert B. Trumbule 9. Performing Organization Name and Address 10. Work Unit No. Maryland Department of Agriculture 11. Contract or Grant No. 50 Harry S Truman Parkway. Annapolis, MD 21401 SP009B4T 12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Final Report Maryland State Highway Administration 14. Sponsoring Agency Code Office of Policy & Research 707 North Calvert Street (7120) STMD - MDOT/SHA Baltimore MD 21202 15. Supplementary Notes 16. Abstract Noxious and invasive weeds readily colonize disturbed areas and outcompete and displace native and other desirable vegetation. This can result in a loss of pollinators (i.e. animals such as birds, bees, and other insects that move pollen between plants making them very important to plant reproduction), wildlife food and nesting resources, and decrease biodiversity in general. -
Milk Thistle
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S. -
Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO
Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area August 2015 CNHP’s mission is to preserve the natural diversity of life by contributing the essential scientific foundation that leads to lasting conservation of Colorado's biological wealth. Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University 1475 Campus Delivery Fort Collins, CO 80523 (970) 491-7331 Report Prepared for: United States Air Force Academy Department of Natural Resources Recommended Citation: Smith, P., S. S. Panjabi, and J. Handwerk. 2015. Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Front Cover: Documenting weeds at the US Air Force Academy. Photos courtesy of the Colorado Natural Heritage Program © Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area El Paso County, CO Pam Smith, Susan Spackman Panjabi, and Jill Handwerk Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University Fort Collins, Colorado 80523 August 2015 EXECUTIVE SUMMARY Various federal, state, and local laws, ordinances, orders, and policies require land managers to control noxious weeds. The purpose of this plan is to provide a guide to manage, in the most efficient and effective manner, the noxious weeds on the US Air Force Academy (Academy) and Farish Recreation Area (Farish) over the next 10 years (through 2025), in accordance with their respective integrated natural resources management plans. This plan pertains to the “natural” portions of the Academy and excludes highly developed areas, such as around buildings, recreation fields, and lawns. -
Exploring the Impact of Associational Effects on C. Pitcheri to Better Biological Control Practices Tina Czaplinska
Lawrence University Lux Lawrence University Honors Projects 5-31-2017 The eevW il Next Door: Exploring the impact of associational effects on C. pitcheri to better biological control practices Tina Czaplinska Follow this and additional works at: https://lux.lawrence.edu/luhp Part of the Biology Commons, Entomology Commons, and the Plant Sciences Commons © Copyright is owned by the author of this document. Recommended Citation Czaplinska, Tina, "The eW evil Next Door: Exploring the impact of associational effects on C. pitcheri to better biological control practices" (2017). Lawrence University Honors Projects. 105. https://lux.lawrence.edu/luhp/105 This Honors Project is brought to you for free and open access by Lux. It has been accepted for inclusion in Lawrence University Honors Projects by an authorized administrator of Lux. For more information, please contact [email protected]. The Weevil Next Door Exploring the impact of associational effects on C. pitcheri to better biological control practices Tina M. Czaplinska Lawrence University ‘17 Table of Contents List of Figures and Tables….………………………………………………………….i Acknowledgements…………………………………………………………………..ii Abstract…………………………………………………………………………………….1 Introduction Biological Control Overview………………………………………………..2 Associational Susceptibility Impact……………………………………..7 Study System………………………………………………………………………9 Research Objectives………………………………………………………….14 Materials and Methods Study Site………………………………………………………………………….15 Experimental Design…………………………………………………………16 Ethograms…………………………………………………………………………17 -
Cirsium Arvense Canada Thistle
Cirsium arvense Canada Thistle Ellen Blankers, edited by Alison Foster Public Lands History Center at Colorado State University, September 2014 History Canada thistle, a noxious weed native to Europe, has plagued North America for at least four centuries. While the specific year in which Canada thistle was first observed in North America is unknown, Lyster Dewey asserted in his 1901 US Department of Agriculture report that by the early 17th century the weed was found growing around the French settlements in Canada. Its spread throughout Canada thereafter was likely rapid. With the Revolutionary War Dewey argued that the extensive movement of each army, along with the army’s heavy reliance on hay, served to introduce Canada thistle farther south. Indeed, by 1795, Vermont enacted a law stipulating that Canada thistle must be controlled. Despite this measure the weed spread, and by 1844 Ohio passed a law prohibiting the sale of any seed contaminated by Canada thistle. A 1913 report described the weed’s further spread Figure 1. Canada thistle across the nation, specifically noting its emergence in the states surrounding the flower head. Source: Ellen Rocky Mountains. Soon after, a 1928 report for the Colorado Agricultural College Blankers. observed the increasing presence of Canada thistle throughout the state. These sources proposed a variety of strategies for the management of Canada thistle, most often recommending the constant removal of the thistle’s top shoots. Yet the authors asserted that this method was only effective if vigorously adhered to. Many also noted the availability and effectiveness of chemical treatment methods; however, with chemicals such as nitric acid, sulphuric acid, and gasoline, among others, the surrounding landscape almost certainly suffered.1 By 1960, Rocky Mountain National Park (ROMO) intermittently engaged in efforts to chemically control the weed, changing both the chemicals utilized as well as the consistency of treatment efforts. -
Oregon Department of Agriculture Pest Risk Assessment for Welted Thistle, Carduus Crispus L
Oregon Department of Agriculture Pest Risk Assessment for Welted thistle, Carduus crispus L. February 2017 Species: Welted thistle, Curly plumeless thistle, (Carduus crispus) L. Family: Asteraceae Findings of this review and assessment: Welted thistle (Carduus crispus) was evaluated and determined to be a category “A” rated noxious weed, as defined by the Oregon Department of Agriculture (ODA) Noxious Weed Policy and Classification System. This determination was based on a literature review and analysis using two ODA evaluation forms. Using the Noxious Qualitative Weed Risk Assessment v. 3.8, welted thistle scored 61 indicating a Risk Category of A; and a score of 16 with the Noxious Weed Rating System v. 3.1, indicating an “A” rating. Introduction: Welted thistle, native to Europe and Asia, has become a weed of waste ground, pastures, and roadsides, in some areas of the United States. The first record of welted thistle occurred in the Eastern U.S. in 1974. For decades, only one site (British Columbia) had been documented west of the Rockies. In 2016, a new western infestation was detected in Wallowa County, Oregon. Welted thistle was found invading irrigated field margins, ditch banks and tended alfalfa crops. Several satellite infestations were found within a mile radius of the core infestation (see Appendix, Map 1). It is not clear how the plant was introduced into Oregon, but contaminated crop seed is suspected. Carduus crispus closely resembles the more common C. acanthoides (plumeless thistle) that is also present in very low numbers in Wallowa County. Wallowa County listed welted thistle as an A-rated weed and quickly expanded survey boundaries and began implementing early eradication measures. -
Preventing Extinction of At-Risk Plant Species in a Complex World Holly Lee Bernardo Washington University in St
Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Summer 8-15-2018 Preventing Extinction of At-Risk Plant Species in a Complex World Holly Lee Bernardo Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Biodiversity Commons, Climate Commons, Ecology and Evolutionary Biology Commons, Environmental Indicators and Impact Assessment Commons, Natural Resources and Conservation Commons, and the Natural Resources Management and Policy Commons Recommended Citation Bernardo, Holly Lee, "Preventing Extinction of At-Risk Plant Species in a Complex World" (2018). Arts & Sciences Electronic Theses and Dissertations. 1609. https://openscholarship.wustl.edu/art_sci_etds/1609 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology & Biomedical Science Evolution, Ecology & Population Biology Dissertation Examination Committee: Scott A. Mangan, Chair Tiffany M. Knight, Co-Chair Matthew Albrecht Jonathan Myers Rachel Penczykowski Adam Smith Preventing Extinction of At-Risk Plant Species in a Complex World by Holly Lee Bernardo A dissertation -
Status Report on Ownbey's Thistle (Cirsium Ownbeyi)
Status Report on Ownbey’s thistle (Cirsium ownbeyi ) in Southwest Wyoming Prepared for the Bureau of Land Management Wyoming State Office By Walter Fertig Wyoming Natural Diversity Database University of Wyoming 1604 Grand Ave. Laramie, WY 82070 8 February 1999 Agreement # K910-A4-0011 Task Order No. TO-015 Abstract Cirsium ownbeyi (Ownbey’s thistle) is a regional endemic of northeastern Utah, northwestern Colorado, and southwestern Wyoming and was formerly a Category 2 candidate for listing under the Endangered Species Act. Prior to 1998, it was known from only two locations in Wyoming and was considered a high priority species of special concern. Surveys in 1998 relocated both known occurrences and resulted in the discovery of five new populations. The state population is currently estimated at 56,000-74,000 plants in about 100 acres of occupied habitat. C. ownbeyi typically occurs in sparsely vegetated openings on slopes and ridgetops within a matrix of sagebrush grasslands on whitish to reddish limey slate derived from the Green River Formation. Although most populations are secure at present, some sites could be negatively impacted by heavy recreation use by off-road vehicles or weed control programs using broadleaf herbicides. Five populations are found on BLM lands in Sweetwater County, including two on designated ACECs. Although not recommended for federal listing under the Endangered Species Act, C. ownbeyi is restricted enough in its habitat requirements and range that it should be considered “sensitive” during BLM resource management planning. 2 Table of Contents Page Abstract . 2 I. Introduction . 5 II. Methods . 5 III. Species Information . -
Canada Thistle (Cirsium Arvense)
DD. Canada Thistle (Cirsium arvense) Key Characteristics: Canada thistle is a member of the Sunflower family. It is a perennial which reproduces by seeds and fleshy, horizontal roots. The erect stem is hollow, mostly smooth, and reaches 1 to 5 feet tall, branching at the top. The lower stem is covered with fine hairs. Flowers are typically pale pink to lavender, sometimes purple. Locations: Canada thistle emerges in June in most parts of Pitkin County. It is one of the most widespread and economically damaging noxious weeds in Colorado. Infestations are found in cultivated fields, riparian areas, pastures, rangeland, forests, lawns and gardens, roadsides, and in waste areas. Because of its prolific seed production, vigor- ous growth, and extensive underground root system, control is difficult. Canada thistle is best managed through an integrated management system that emphasizes competitive desirable plants. Biological control: Cattle, goats, and sheep will graze Canada thistle when plants are tender in the Spring. There are also currently several insects available for Canada Thistle control: • Canada Thistle Stem Mining Weevil (Ceutorhvnchus litura) attacks the stem of young Canada Thistle plants as they emerge from the soil and begin to elongate. • Canada Thistle Flower Weevil (Larinus planus) feeds on flower heads. • Defoliating Beetle (Cassida rubiginosa) eats the leaves of Canada, Musk, Plumeless Thistles. Cultural control: Maintain soil disturbances, and encourage desirable plant growth. Mechanical control: Canada thistle is very difficult to mechanically control because each time a root is cut, it serves to increase the number of plants; regular cutting or tillage can wear down plant reserves and reduce population and vigor but results are often erratic. -
Forest Health Technology Enterprise Team Biological Control of Invasive
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control Biological Control of Invasive Plants in the Eastern United States Roy Van Driesche Bernd Blossey Mark Hoddle Suzanne Lyon Richard Reardon Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2002-04 Department of Service August 2002 Agriculture BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES Technical Coordinators Roy Van Driesche and Suzanne Lyon Department of Entomology, University of Massachusets, Amherst, MA Bernd Blossey Department of Natural Resources, Cornell University, Ithaca, NY Mark Hoddle Department of Entomology, University of California, Riverside, CA Richard Reardon Forest Health Technology Enterprise Team, USDA, Forest Service, Morgantown, WV USDA Forest Service Publication FHTET-2002-04 ACKNOWLEDGMENTS We thank the authors of the individual chap- We would also like to thank the U.S. Depart- ters for their expertise in reviewing and summariz- ment of Agriculture–Forest Service, Forest Health ing the literature and providing current information Technology Enterprise Team, Morgantown, West on biological control of the major invasive plants in Virginia, for providing funding for the preparation the Eastern United States. and printing of this publication. G. Keith Douce, David Moorhead, and Charles Additional copies of this publication can be or- Bargeron of the Bugwood Network, University of dered from the Bulletin Distribution Center, Uni- Georgia (Tifton, Ga.), managed and digitized the pho- versity of Massachusetts, Amherst, MA 01003, (413) tographs and illustrations used in this publication and 545-2717; or Mark Hoddle, Department of Entomol- produced the CD-ROM accompanying this book. -
The Antagonistic and Mutualistic Plant-Insect Interactions of Pitcher's Thistle
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarShip THE ANTAGONISTIC AND MUTUALISTIC PLANT-INSECT INTERACTIONS OF PITCHER’S THISTLE (CIRSIUM PITCHERI [TORR. EX EAT.] TORR. & A. GRAY, ASTERACEAE), A FEDERALLY THREATENED GREAT LAKES DUNE AND COBBLE SHORE ENDEMIC PLANT Jaclyn N. Inkster April 2016 Director of Thesis: Dr. Claudia L. Jolls Major Department: Department of Biology Biological control is one of the tools used for integrated pest management of invasive plant species but it is not without risks to native plants. I researched the non-target impacts of the biological control agent, the seed head weevil Larinus planus (Coleoptera: Curculionidae) on the Great Lakes dune and cobble shore endemic threatened thistle, Cirsium pitcheri (Asteraceae). Pitcher’s thistle is an herbaceous perennial monocarpic plant with no means of vegetative reproduction, relying solely on seed set for population persistence. The seed head weevil is univoltine and lays eggs in thistle heads. The developing larva chews the ovules or seeds before emerging as an adult to overwinter in leaf litter. I repeatedly surveyed Pitcher’s thistle plants from three populations in northern lower Michigan for impacts. The insect oviposits on thistle heads from mid-June to early July, before C. pitcheri flowering. Heads that received oviposition were on average 12-14 mm in diameter. Approximately 32% of the 1,695 heads surveyed had oviposition. A subset of dissected heads had 56% weevil egg mortality. With weevil survival, the number of filled seeds was reduced by 62%. A generalized linear mixed binary logistic model reported date of oviposition and size of heads as significant predictors of oviposition on heads.