Redalyc.EFFECT of SOYBEAN PLANT POPULATIONS on YIELD

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.EFFECT of SOYBEAN PLANT POPULATIONS on YIELD Tropical and Subtropical Agroecosystems E-ISSN: 1870-0462 [email protected] Universidad Autónoma de Yucatán México Mbah, E .U.; Ogidi, E. EFFECT OF SOYBEAN PLANT POPULATIONS ON YIELD AND PRODUCTIVITY OF CASSAVA AND SOYBEAN GROWN IN A CASSAVA-BASED INTERCROPPING SYSTEM Tropical and Subtropical Agroecosystems, vol. 15, núm. 2, mayo-agosto, 2012, pp. 241-248 Universidad Autónoma de Yucatán Mérida, Yucatán, México Available in: http://www.redalyc.org/articulo.oa?id=93924497006 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Tropical and Subtropical Agroecosystems, 15 (2012) : 241 - 248 EFFECT OF SOYBEAN PLANT POPULATIONS ON YIELD AND PRODUCTIVITY OF CASSAVA AND SOYBEAN GROWN IN A CASSAVA- BASED INTERCROPPING SYSTEM [EFECTO DE LAS POBLACIONES DE PLANTAS DE SOYA SOBRE EL RENDIMIENTO Y PRODUCTIVIDAD DE YUCA Y SOYA CRECIDAS EN UN SISTEMA INTERCALADO BASADO EN YUCA] E .U. Mbaha* and E. Ogidib aDepartment of Crop Production Technology, Federal College of Agriculture, P.M.B. 7008, Ishiagu, Ebonyi State, Nigeria. E-mail: [email protected] bDepartment of Biological Sciences, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria. *Corresponding author SUMMARY RESUMEN Intercropping cassava (Manihot esculenta Crantz), Las poblaciones de plantas en el cultivo de yuca with varying soybean [Glycine max (L.) Merrill] plant intercalado (Manihot esculenta Crantz) con populations may influence not only the performance variedades de soya [Glycine max (L.) Merrill] podrían of the component crops but also the residual nitrogen influenciar el rendimiento de los componentes del contribution to the cropping system. The treatment cultivo y el suministro de nitrógeno residual al scheme was cassava fixed at 100% of its sole crop sistema de cultivo. El esquema de tratamiento population of 10,000 plants ha-1 while soybean was consistió en yuca fijado en 100% de una sola varied at 25, 50, 75 and 100% of its sole crop población de 10,000 plantas ha-1 mientras que la de population of 266,000 plants ha-1, representing soya fue variada en 25,50,75 y 100% de una sola 66,500; 133,000; 199,500 and 266,000 plants ha-1, población de 266,000 plantas ha-1 representando respectively. The experiment was laid out in a 66,500; 133,000; 199,500 y 266,000 plantas ha-1 randomized complete block design with three respectivamente. El rendimiento de tubérculos frescos replicates. Fresh tuber yield in cassava increased as de yuca se incrementó conforme la población de soya soybean population increased to the highest amount incrementó, mientras que el número de vainas por used in the study while number of pods plant-1 and planta-1 y peso de la semilla por planta-1disminuyó en seed weight plant-1 in soybean were depressed by la soya por el intercalado en las dos temporadas. Sin intercropping in the two cropping seasons. However, embargo el rendimiento de grano en la soya se soybean grain yield was significantly increased with aumento con el incremento en la población debido al increase in population due to higher aggregate plant número de plantas que fueron agregadas por unidad populations per unit area in the intercrop. Averaged de área en el intercalado. Promediando después de las over the two cropping seasons, productivity showed dos temporadas, la productividad demostró que el that cassava/soybean intercrop, especially at the intercalado de yuca/soya, especialmente en la más highest soybean population gave the highest yield alta población dio el más alto rendimiento en advantage in terms of total land equivalent ratio, términos de total de tierra equivalente (2.00), (2.00), land equivalent coefficient (2.41), crop yield coeficiente de tierra (2.41), equivalente de equivalent for cassava (31.07 t ha-1) and for soybean rendimiento de cultivo para yuca (31.07 t ha-1) y para (2.25 t ha-1), monetary equivalent ratio (1.56), total la soya (2.25 t ha-1), proporción monetaria (1.56), gross monetary returns (N170,311.52) and total net recuperación monetaria bruta (N170,311.52), y la profit (N74,488.02). This implies that for maximum ganancia total neta (N74,488.02). Esto implica que financial returns, additive intercropping of cassava para una recuperación máxima, intercalados de yuca and soybean at 100% cassava + 100% soybean is y soya en 100% de yuca mas 100% de soya es recommended because of improved productivity of recomendado porque mejora la productividad del the system as well as bonus yield and improved sistema así como también mejora el rendimiento y health of the farmers from the associated soybean mejora las condiciones de los agricultores debido a la component are achieved. asociación del componente soya. Keywords: Cassava; Manihot esculenta Crantz; Palabras clave: Yuca; Manihot esculenta Crantz, soybean; Glycine max; intercropping; plant Soya; Glycine max; Intercalado; Población de plantas; populations; productivity. Productividad. 241 Mbah and Ogidi 2012 INTRODUCTION at Longitude 07o 33' E, Latitude 05o 29' N, altitude 122 m in the humid low lands of southeastern Growing of two or more crops simultaneously on the Nigeria. The area has two distinct seasons – the dry same field in different but proximate stands is a season (November – April) and the wet season (May common sustainable crop production system in the – October). The mean annual rainfall of the humid tropics (Fageria, 1992, Willey, 1979). It has experimental site was 2,179.5 mm (2001/02) and been shown to be more efficient in resource 2,069.3 mm (2002/03) and displays a bimodal pattern utilization, and improves the overall ecology of the that is characteristics of southern part of West Africa. system (Babatunde, 2000) as well as increases The mean monthly temperature during the two monetary returns to the farmers (Mbah et al., 2009). cropping seasons ranged from a mean minimum of According to Olasantan and Lucas, (1992) the 25.0 o C to a mean maximum of 28.5 o C. The architecture and height of crop canopy as well as days vegetation is rainforest, although much has been to utilization of soil and aerial environment of the degraded to secondary forest and fallow. The top soil plants properly contribute to the competitiveness and of the location is a sandy loam characterized as ultisol performance of component crops in intercropping. (paleustult). The pre-planting soil analysis (0 – 15 Furthermore, the penetration of light into plant stand cm) of the experimental sites is presented in Table 1. is diminished through interception and absorption by the leaves and other parts of the shoot systems. A low branching cassava variety (TMS 30572) was obtained from National Root Crops Research Institute Hence, in an intercropping system, light utilization by (NRCRI), Umudike, Abia State, Nigeria, while a leaf and crop surfaces determine the potential shares medium maturing soybean variety (TGX-1440-IE) of the light that are gained by the component crops. obtained from International Institute of Tropical Introducing legumes, including, soybean into Agriculture (IITA) Ibadan, Oyo state, Nigeria were cassava-based cropping systems in the humid tropics used for the study. There were six treatments fitted of south east Nigeria is gaining increased attention into a randomized complete block design with three because soybean fix atmospheric nitrogen and replications. The experiment was carried out under produce proteins, while cassava deplete the soil the following treatment scheme: nitrogen and give carbohydrates. 1. 100 % sole cassava, (10,000 plants ha-1) Cassava and soybean mixtures improve the diet of 2. 100 % sole soybean, (266,000 Plants ha-1) farmers as well as the soils of their farms. This study 3. 100 % sole cassava + 25 % sole soybean was initiated purposely to evaluate the effects of 4. 100 % sole cassava + 50 % sole soybean increasing soybean plant density on growth, yield and 5. 100 % sole cassava + 75 % sole soybean biological productivity of the crop species in the 6. 100 % sole cassava + 100 % sole soybean mixture as well as to assess the appropriate soybean plant density in cassava/soybean mixture. The sole of the component crops were established as control for assessing productivity of the system. The MATERIALS AND METHODS Plot size was 4 x 5 m (20 m-2) with 0.50 m inter-plot and 1.00 m inter-block spaces. Cassava and soybean Field experiments were conducted at the Teaching were planted the same day on 5 m long ridges made 1 and Research Farm, Michael Okpara University of m apart. Agriculture, Umudike, Abia State. The study area lies Table 1: Pre-planting soil analysis of experimental sites in 2001/02 and 2002/03 cropping seasons. Soil Property Values 2001/02 2002/03 Soil texture Sandy loam pH 1:1 (soil:water) 5.20 4.50 % organic carbon 1.16 1.10 % Total N 0.10 0.13 % organic matter 2.16 2.32 Available P Cmol./kg 19.0 17.0 Exchangeable Ca2+ Cmol./kg 2.40 1.20 Exchangeable k Cmol./kg 0.17 0.20 Effective CEC Cmol./kg 4.62 6.24 242 Tropical and Subtropical Agroecosystems, 15 (2012) : 241 - 248 Cassava cuttings were planted slanting (45°) on the Land equivalent coefficient, (LEC) = crest of the ridges, one meter apart at the LA x LB recommended sole plant population of 10,000 plants ha-1 while soybean seeds were sown, three seeds Where, stand-1 at the varying plant populations as shown in LA = LER of main crop (Cassava) the treatment scheme. Missing stands of cassava LB = LER of intercrop, (Adetiloye et al., 1983). were supplied while soybean seedlings were thinned to achieve one plant stand-1 2 weeks after planting (WAP).
Recommended publications
  • Toward Improving Photosynthesis in Cassava: Characterizing Photosynthetic Limitations in Four Current African Cultivars
    Received: 19 June 2017 | Revised: 16 February 2018 | Accepted: 20 February 2018 DOI: 10.1002/fes3.130 ORIGINAL RESEARCH Toward improving photosynthesis in cassava: Characterizing photosynthetic limitations in four current African cultivars Amanda P. De Souza1 | Stephen P. Long1,2 1Departments of Crop Sciences and Plant Biology, Carl R Woese Institute for Abstract Genomic Biology, University of Illinois at Despite the vast importance of cassava (Manihot esculenta Crantz) for smallholder Urbana-Champaign, Urbana, IL, USA farmers in Africa, yields per unit land area have not increased over the past 55 years. 2 Lancaster Environment Centre, Lancaster Genetic engineering or breeding for increased photosynthetic efficiency may repre- University, Lancaster, UK sent a new approach. This requires the understanding of limitations to photosynthesis Correspondence within existing germplasm. Here, leaf photosynthetic gas exchange, leaf carbon and Stephen P. Long, Departments of Crop nitrogen content, and nonstructural carbohydrates content and growth were analyzed Sciences and Plant Biology, Carl R Woese Institute for Genomic Biology, University in four high- yielding and farm- preferred African cultivars: two landraces (TME 7, of Illinois at Urbana-Champaign, Urbana, TME 419) and two improved lines (TMS 98/0581 and TMS 30572). Surprisingly, IL, USA. A Email: [email protected] the two landraces had, on average, 18% higher light-saturating leaf CO2 uptake ( sat) than the improved lines due to higher maximum apparent carboxylation rates of Funding information Bill and Melinda Gates Foundation, Grant/ Rubisco carboxylation (Vcmax) and regeneration of ribulose- 1,5- biphosphate ex- Award Number: OPP1060461 pressed as electron transport rate (Jmax). TME 419 also showed a greater intrinsic water use efficiency.
    [Show full text]
  • Cassava Plant Guide
    Plant Guide Food products: There are hydrocyanic glucosides CASSAVA (HCN) in all parts of the plant; these glucosides are Manihot esculenta Crantz removed by peeling the roots and boiling in water. Plant symbol = MAES The young tender leaves are used as a potherb, containing high levels of protein and vitamins C and Contributed by: USDA NRCS National Plant Data A. The leaves are prepared in a similar manner as Center spinach, while eliminating toxic compounds during the cooking process. Cassava flour is used to make cookies, quick breads, loaf breads, pancakes, doughnuts, dumplings, muffins, and bagels. Cassava extracted juice is fermented into a strong liquor called kasiri. It also can be concentrated and sweetened until it becomes dark viscous syrup called kasripo (casareep). This syrup has antiseptic properties and is used for flavoring. The peeled roots of the sweet variety are usually eaten cooked or baked. Livestock: Cassava leaves and stem meal are used for feeding dairy cattle. Both fresh and dried cassava roots are consumed by ruminants in different forms (chopped, sliced, or ground). Cassava bushes three to four months old are harvested as forage for cattle and other ruminants. Lincoln Moore. 2005 USDA NRCS Ornamental: One clone with variegated leaves is planted as an ornamental. Alternate Names Synonyms: Jatropha manihot L., Janipha manihot Commercial: Cassava starch is used in the production (L.) Kunth, Manihot utilissima Poh, Manihot aipi of paper, textiles, and as monosodium glutamate Poh, Manihot manihot (L.) Cockerell, Manihot (MSG), an important flavoring agent in Asian melanobasis Muell. Arg. cooking. In Africa, cassava is used as partial substitution for wheat flour.
    [Show full text]
  • What Makes Premium Cassava Flour Special?
    2018 E-zine Coverage What Makes Premium Cassava Flour Special? Manufacturers of baked goods with the development of adopted starch manufacturing and snack foods differentiate delicious, high-quality baked technology and since produced in the crowded marketplace goods and snack foods. and sold only tapioca starch by offering specialty products and a number of them that speak to today’s FBN: What is cassava? continued to refer to this consumers’ wants and needs. new ingredient as tapioca Some of the most frequently Mr. Festejo: Cassava, also flour. Tapioca flour, or more requested products are those commonly known as yucca or appropriately, cassava flour, is with gluten-free, grain-free and manioc, is a perennial woody still produced and consumed non-GMO claims. shrub with an edible root that in tropical countries where the grows in tropical and subtropical cassava plant is indigenously Food Business News spoke with areas of the world. While many grown. However, the quality and Mel Festejo, COO of AKFP to food professionals are familiar characteristics of the flour are learn how Premium Cassava with and have used tapioca adapted only to native dishes Flour, alone or in a mix, assists starches and like derivatives, few in these countries. These local know that tapioca’s raw material cassava flours are not well is the root of the cassava plant. suited for use in gluten-free Tapioca or cassava starch is baked goods and snack foods. produced by the extraction of Our proprietary technology is only the starch component of making cassava flour a highly the root. Tapioca or cassava suitable functional, nutritional, flour, on the other hand, requires clean-label ingredient for gluten- the processing of the whole free and even grain-free baking peeled root.
    [Show full text]
  • Finger Millet"
    Background on the development of the "Global strategy for the ex situ conservation of finger millet" The development of the strategy involved the following main steps: • The finger millet strategy was initiated in December, 2009 and discussions took place with international, regional and national partners through email discussions whereby a survey questionnaire was finalized for circulation. • Information and data were gathered using databases such as GENESYS (www.genesys- pgr.org), FAO-WIEWS (http://apps3.fao.org/wiews/wiews.jsp?i_l=EN), SINGER (http://singer.cgiar.org/), EURISCO (http://eurisco.ecpgr.org/) and GBIF); reports and other information resources on the holdings of finger millet genepools and additional inventory of collections. • Identification of major germplasm collections of finger millet based on information collected above were identified along with Institutes and their respective contact persons to undertake the survey. • Survey questionnaire was designed in consultation with experts and survey was undertaken to gather information on collections, content and status of conservation in January, 2011 and information was received from 56 countries across Asia, Africa, Europe and Americas. • After receiving information from the survey, a draft report was finalized and circulated to all the partners for their feedback. • The consultation meeting was organized on December 23, 2011 to discuss the draft report where participants from India, Kenya, Uganda, Mali, and Senegal participated. Based on their input, the final report was prepared for submission. Coordinator: Much of the development of the finger millet strategy was coordinated by Dr. P N Mathur ([email protected]), South Asia Coordinator at Bioversity International in consultation with Dr.
    [Show full text]
  • Save and Grow: Cassava
    Chapter 7 Harvest, post-harvest and value addition Food for the household, feed for livestock, and raw material for a wide array of value-added products, from coarse flour to high-tech starch gels – cassava is a truly multipurpose crop. Chapter 7: Harvest, Post-harvest and Value Addition 89 ne of the major positive attributes of cassava is that it does not have a specific harvesting period. Roots may be harvested any time be- tween six months and two years after planting. During periods of food shortage, they can be harvested Owhenever needed, often one plant – or even one root – at a time. For human consumption, harvesting usually takes place at about 8 to 10 months; for industrial uses, a longer growing period generally produces a higher root and starch yield. Once harvested, roots can be consumed directly by the farm household, fed to livestock or sold for processing into a wide array of value-added products, ranging from coarse flour to high-tech modified starch gels. The root is not the only part of the plant that can be put to good use. In Africa, cassava leaves are cooked as a vegetable. In many countries, the green part of the upper stem, including leaves and petioles, are fed to cattle and buffaloes, while the leaf-blades are fed to pigs and chickens. In China, Thailand and Viet Nam, fresh leaves are used for raising silkworms. Stumps are burned as fuelwood, and woody stems are ground-up and used as a substrate for growing mushrooms. Harvesting roots and plant tops Bringing home the harvest.
    [Show full text]
  • The Study of Discrimination of Remotely Sensed Data for Designing the Separation Technique Between Cassava and Sugarcane Farmland
    The Study of Discrimination of Remotely Sensed Data for Designing the Separation Technique between Cassava and Sugarcane Farmland Anuphao Aobpaet a and Soravis Supavetch Department of Civil Engineering, Kasetsart University, Bangkok, Thailand Keywords: Cassava, Sugarcane, Remote Sensing for Agriculture. Abstract: Cassava and sugarcane are the most important agricultural crops in Thailand. The cultivations of those are similarly in crop season, natural resources, and climate. For decades, the farmers usually switch their plant depending on unit price and government subsidy. The use of remote sensing data for monitoring change in farmland has encountered a problem on the similarity of vegetation index and the seasonal variation. In this work, we investigate the significant differences between cassava and sugarcane plantation by using satellite data from two sensors systems (Optical and SAR sensor) from Sentinel-1 and Sentinel-2 satellites. The result of the sampling fields of cassava shows the fluctuation of the growth and the mean of SAVI is slightly lower than sugarcane at the same age. SAVI values over the cassava farmland seem to approach the homogeneity of sugarcane when the age of more than 11 months. Thus, the difference between cassava and sugarcane farmland using this method should be investigated on the growth stage of the age between 4-9 months. For SAR polarization, the VV, VH of SAR backscatters have little difference in cassava and sugarcane. When compare the backscatters value of VV and VH from cassava and sugarcane, the sigma0 values in dB show that VV backscatters have a higher signal return. The variation of VH polarization of cassava and sugarcane seem difficult to identify due to the diversity of signal targets.
    [Show full text]
  • Cassava System Cropping Guide
    Cassava system cropping guide Stefan Hauser, Lydia Wairegi, Charles L. A. Asadu, Damian O. Asawalam, Grace Jokthan and Utiang Ugbe Africa Soil Health Consortium: Cassava cropping guide By Stefan Hauser (IITA), Lydia Wairegi (CABI), Charles L. A. Asadu (University of Nigeria), Damian O. Asawalam (MOUAU, Nigeria), Grace Jokthan (National Open University of Nigeria) and Utiang Ugbe (Development Input Limited, Nigeria) © CAB International 2014 Please cite this publication as: Hauser, S. et al. (2014) Cassava system cropping guide. Africa Soil Health Consortium, Nairobi. This publication is licensed under a Creative Commons Attribution 3.0 Unported License. Cover photo courtesy of Stefan Hauser (IITA): members of the farmer association at Mampu, Democratic Republic of Congo Creative Commons License: You are free: • to Share — to copy, distribute and transmit the work • to Remix — to adapt the work • to make commercial use of the work Under the following conditions: • Attribution — You must attribute the work in the manner speciied by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). With the understanding that: • Waiver — Any of the above conditions can be waived if you get permission from the copyright holder. • Public Domain — Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license. • Other Rights — In no way are any of the following rights affected by the license: • Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations; • The author’s moral rights; • Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights.
    [Show full text]
  • Cassava and Sweet Potato
    Cassava and Sweet Potato Suitability of Popular Caribbean Varieties for Value Added Product Development CASSAVA AND SWEET POTATO Suitability of Popular Caribbean Varieties for Value Added Product Development By Pathleen Titus Janet Lawrence CARIBBEAN AGRICULTURAL RESEARCH AND DEVELOPMENT INSTITUTE (CARDI) INTER-AMERICAN INSTITUTE FOR COOPERATION ON AGRICULTURE (IICA) Inter-American Institute for Cooperation on Agriculture (IICA), 2015 Cassava and sweet potato: suitability of popular Caribbean varieties for value added product development by IICA is licensed under a Creative Commons Attribution-ShareAlike 3.0 IGO (CC-BY-SA 3.0 IGO) (http://creativecommons.org/licenses/by-sa/3.0/igo/) Based on a work at www.iica.int CARDI and IICA encourages the fair use of this document. Proper citation is requested. This publication is also available in electronic (PDF) format from the Institute’s Web site: http://www.cardi.org and http://www.iica.int Editorial coordination: Lisa Harrynanan (IICA) and Richard Rampersaud (CARDI) Mechanical Editing: Bruce Lauckner; Opal Morris (CARDI) Layout: Kathryn Duncan Cover design: Kathryn Duncan Photos: CARDI and IICA Offices in the Caribbean Printed: Scrip-J, Port of Spain, Trinidad & Tobago Cassava and sweet potato: suitability of popular Caribbean varieties for value added product development / CARDI, IICA -- Port of Spain; IICA, 2015 122 p.: 13.97 cm x 21.59 cm ISBN: 978-92-9248-587-0 1. Cassava 2. Ipoema batatas 3. Varieties 4. Value added 5. Roots 6. Tubers 7. Food security 8. Nutrition 9. Technology transfer 10. Agroindustry 11. Technical aid 12. Barbados 13. Dominica 14. St. Kitts and Nevis 15. Trinidad and Tobago 16.
    [Show full text]
  • C I N I a Nd the 2 Conference on Innovation and Industrial Applications (CINIA 2016)
    C I N I A nd The 2 Conference on Innovation and Industrial Applications (CINIA 2016) The Utilization of Cassava and Sorghum Flours as A Staple Food in Indonesia Setiyo Gunawan1, Nur Istianah2, Hakun Wirawasista Aparamarta1, Raden Darmawan1, Lailatul Qadariyah1, and Kuswandi1 1Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111 Indonesia 2Agricultural Products Technology, Brawijaya University, Malang 65145, Indonesia [email protected] Abstrak Indonesia has high a demand level of wheat flour for both the industrial and households sectors, such as bread industry. Wheat flour is the dominant composition of bread, however it is the source of gluten which may promote celiac disease (CD). The lifetime obedience to the gluten-free diet is the only treatment for this disease. The finding of a new material in order to obtain gluten-free product is an important topic. Furthermore, Indonesia is a tropical region that is rich in natural resources, such as cassava (Manihot esculenta) and Sorghum (Sorghum-bicolor (L) Moech). Fermentation was used to improve nutritional content of sorghum flour and cassava flour, resulting modified cassava flour (mocaf) and modified sorghum flour (mosof), respectively. A strategy for utilization of cassava in production of mocaf was demonstrated. Mocaf flour can be produced by fermentation use L. plantarum, S. cereviseae, and R. oryzae that are cheap and non pathogenic to increase the levels of protein and decrease the levels of cyanide acid in the mocaf flour. This work has also shown that lactid acid is produced as by-product during the fermentation. Keyword: cassava, celiac disease, fermentation, sorghum, wheat 1 INTRODUCTION Recently, bread is one of common food that are also become a stuff food in Indonesia.
    [Show full text]
  • Effect of Soybean/Cassava Flour Blend on the Proximate Composition of Ethiopian Traditional Bread Prepared from Quality Protein Maize
    Volume 13 No. 4 September 2013 EFFECT OF SOYBEAN/CASSAVA FLOUR BLEND ON THE PROXIMATE COMPOSITION OF ETHIOPIAN TRADITIONAL BREAD PREPARED FROM QUALITY PROTEIN MAIZE 1* 2 Mesfin W and A Shimelis Mesfin Wogayehu *Corresponding author: email: [email protected] 1 Food Technology & Food Process Engineering Programme, Institute of Technology, Bahir Dar University, P.O.Box: 2203, Bahir Dar, Ethiopia 2Food Engineering Programme, School of Chemical and Bio-Engineering, Addis Ababa University, P.O.Box 33381, E-mail: [email protected]. Addis Ababa, Ethiopia. 7985 Volume 13 No. 4 September 2013 ABSTRACT The effect of soybean and cassava flour blend on the proximate composition of Ethiopian traditional bread prepared from quality protein maize (QPM) was tested. Normal maize and quality protein maize grains were dried, cleaned and milled using a laboratory-scale mill. Similarly, soybean seeds were roasted, boiled, decorticated, and milled into the required particle size flour sample. Cassava tubers were also peeled, chopped, dried and milled in a similar fashion. Eventually, the soybean and cassava flour samples were blended individually with the quality protein maize flour in three different proportions: 5:95, 10:90 and 15:85, respectively. Normal maize flour was used as a control for the quality protein maize flour. Then bread samples were prepared from the respective composite flours using the sponge and dough method of bread making commonly used in the country. Both the composite flours and the respective bread samples were then analyzed for their proximate compositions: moisture, ash, crude protein, crude fat, crude fibre and carbohydrate. The proximate analyses indicated that there is a significant difference (p ≤ 0.05) in proximate composition of the plain quality protein maize bread (QPMB) and the soybean- or cassava-supplemented quality protein maize bread samples (SSBs and CSBs).
    [Show full text]
  • Sugarcane Starch: Quantitative Determination and Characterization Amido De Cana-De-Açúcar: Determinação Quantitativa E Caracterização
    ISSN 0101-2061 Ciência e Tecnologia de Alimentos Original Sugarcane starch: quantitative determination and characterization Amido de cana-de-açúcar: determinação quantitativa e caracterização Joelise de Alencar FIGUEIRA1*, Priscila Hoffmann CARVALHO1, Hélia Harumi SATO1 Abstract Starch is found in sugarcane as a storage polysaccharide. Starch concentrations vary widely depending on the country, variety, developmental stage, and growth conditions. The purpose of this study was to determine the starch content in different varieties of sugarcane, between May and November 2007, and some characteristics of sugarcane starch such as structure and granules size; gelatinization temperature; starch solution filterability; and susceptibility to glucoamylase, pullulanase, and commercial bacterial and fungal α-amylase enzymes. Susceptibility to debranching amylolytic isoamylase enzyme from Flavobacterium sp. was also tested. Sugarcane starch had spherical shape with a diameter of 1-3 µm. Sugarcane starch formed complexes with iodine, which showed greater absorption in the range of 540 to 620 nm. Sugarcane starch showed higher susceptibility to glucoamylase compared to that of waxy maize, cassava, and potato starch. Sugarcane starch also showed susceptibility to debranching amylolytic pullulanases similar to that of waxy rice starch. It also showed susceptibility to α-amylase from Bacillus subtilis, Bacillus licheniformis, and Aspergillus oryzae similar to that of the other tested starches producing glucose, maltose, maltotriose, maltotetraose, maltopentose
    [Show full text]
  • Bridging the Gap Between Biofuels and Biodiversity Through
    RESEARCH ARTICLE Bridging the Gap Between Biofuels and Biodiversity 10.1029/2020EF001478 Through Monetizing Environmental Services Key Points: Miscanthus • Environmental services of the of Cultivation perennial lignocellulosic crop Moritz Von Cossel1 , Bastian Winkler1 , Anja Mangold1 , Jan Lask1 , Moritz Wagner1 , Miscanthus were monetized for 1 2 2 3 marginal agricultural land in Iris Lewandowski , Berien Elbersen , Michiel van Eupen , Stephan Mantel , Germany and Andreas Kiesel1 • Monetary value of Miscanthus cultivation accounts for 1Biobased Resources in the Bioeconomy (340b), Institute of Crop Science, University of Hohenheim, Stuttgart, Germany, – € −1 1,200 4,183 a , three times higher 2Team Earth Informatics, Wageningen Environmental Research, Wageningen, The Netherlands, 3International Soil than the value of the raw material for biofuel Reference and Information Centre, Wageningen, The Netherlands • Monetizing environmental services bridges the gap between biofuels and biodiversity by promoting the use of Abstract Carbon neutrality in the transport sector is a key challenge for the growing bioeconomy as the second generation biofuels share of biofuels has stagnated over the past decade. This can be attributed to basic economics and a lack of a robust market for these technologies. Consequently, more sustainable biomass supply concepts are required that reduce negative impacts on the environment and at the same time promote environmental Correspondence to: services for sustainable agricultural cropping systems including erosion prevention, soil fertility M. Von Cossel, improvement, greenhouse gas mitigation, and carbon sequestration. One promising concept is the [email protected] cultivation of perennial biomass crops such as Miscanthus (Miscanthus Andersson) as biofuel feedstock. In this study, the multiple environmental services provided by Miscanthus are first explored and subsequently Citation: monetized.
    [Show full text]