Soluble, Template-Dependent Extracts from Nicotiana Benthamiana Plants Infected with Potato Virus X Transcribe Both Plus- and Minus-Strand RNA Templates

Total Page:16

File Type:pdf, Size:1020Kb

Soluble, Template-Dependent Extracts from Nicotiana Benthamiana Plants Infected with Potato Virus X Transcribe Both Plus- and Minus-Strand RNA Templates Virology 275, 444–451 (2000) doi:10.1006/viro.2000.0512, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Soluble, Template-Dependent Extracts from Nicotiana benthamiana Plants Infected with Potato Virus X Transcribe both Plus- and Minus-Strand RNA Templates Carol A. Plante,* Kook-Hyung Kim,*,1 Neeta Pillai-Nair,* Toba A. M. Osman,† Kenneth W. Buck,† and Cynthia L. Hemenway*,2 *Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695; and †Department of Biology, Imperial College of Science, Technology, and Medicine, London, SW7 2AZ, United Kingdom Received May 4, 2000; returned to author for revision June 22, 2000; accepted July 7, 2000 We have developed a method to convert membrane-bound replication complexes isolated from Nicotiana benthamiana plants infected with potato virus X (PVX) to a soluble, template-dependent system for analysis of RNA synthesis. Analysis of RNA-dependent RNA polymerase activity in the membrane-bound, endogenous template extracts indicated three major products, which corresponded to double-stranded versions of PVX genomic RNA and the two predominant subgenomic RNAs. The endogenous templates were removed from the membrane-bound complex by treatment with BAL 31 nuclease in the presence of Nonidet P-40 (NP-40). Upon the addition of full-length plus- or minus- strand PVX transcripts, the corresponding-size products were detected. Synthesis was not observed when red clover necrotic mosaic dianthovirus (RCNMV) RNA 2 templates were added, indicating template specificity for PVX transcripts. Plus-strand PVX templates lacking the 3Ј terminal region were not copied, suggesting that elements in the 3Ј region were required for initiation of RNA synthesis. Extracts that supported RNA synthesis from endogenous templates could also be solublized using sodium taurodeoxycholate and then rendered template-dependent by BAL 31 nuclease/NP-40 treatment. The solubilized preparations copied both plus- and minus-strand PVX transcripts, but did not support synthesis from RCNMV RNA 2. These membrane-bound and soluble template-dependent systems will facilitate analyses of viral and host components required for PVX RNA synthesis. © 2000 Academic Press INTRODUCTION (Bates et al., 1995), and turnip crinkle virus (Song and Simon, 1994). Some of these template-dependent sys- The development of template-dependent, RNA-depen- tems have been utilized for analyses of host and viral dent RNA polymerase (RdRp) preparations from tissues or cells infected with plus-strand RNA viruses has facil- protein components contained in the RdRp complexes itated analyses of the components and reactions neces- (for reviews, see Buck, 1996; and Lai, 1998). Several of sary for RNA synthesis. Such systems have been devel- the plant viral RdRp preparations have been useful for oped for several viruses that infect a variety of hosts, the determination of template requirements for initiation including bacteriophage Q␤ (Blumenthal and Car- of minus-strand RNA synthesis (for reviews, see Buck, michael, 1979), black beetle virus (Saunders and Kaes- 1996; and Dreher, 1999). The BMV and TCV RdRp prep- berg, 1985), flockhouse virus (Wu et al., 1992), polio virus arations have additionally been utilized for analysis of (van Dyke and Flanegan, 1980; Baron and Baltimore, plus-strand RNA synthesis in vitro (Miller et al., 1985; 1982), Sindbis virus (Lemm et al., 1998), and the plant Adkins et al., 1997; Guan et al., 1997, 2000a, b; Siegel et viruses alfalfa mosaic virus (Houwing and Jaspars, 1986; al., 1997; Wang and Simon, 1997; Sivakumaran and Kao, Quadt et al., 1991), brome mosaic virus (Miller and Hall, 1999; Sivakumaran et al., 1999) and for studying recom- 1983; Quadt and Jaspars, 1990), cucumber mosaic virus bination mechanisms (Nagy et al., 1998; Nagy and Si- (Hayes and Buck, 1990; Quadt and Jaspars, 1991), turnip mon, 1998a, b). For the most part, such requirements yellow mosaic virus (Mouches et al., 1974; Garbouri- have been investigated for plant viruses containing ei- Bouzid et al., 1991; Deiman et al., 1997; Singh and Dreher, ther a tRNA-like 3Ј terminus or other predicted struc- 1997), tobacco mosaic virus (Osman and Buck, 1996; tures, but not for viruses containing polyadenylated ter- Watanabe et al., 1999), red clover necrotic mosaic virus mini such as those in the Potexvirus genus. Potato virus X (PVX), the type member of the Potexvirus genus, is a flexuous rod-shape particle containing a 1 Current address: School of Applied Biology and Chemistry, College capped and polyadenylated genomic RNA of 6.4 kb of Agriculture and Life Science, Seoul National University, Suwon, (Skryabin et al., 1988a, b). This RNA contains an 84- Korea 441-744. 2 Ј To whom correspondence and reprint requests should be ad- nucleotide (nt) 5 nontranslated region (NTR), five open dressed. reading frames (ORFs), and a 72-nt 3Ј NTR (Fig. 1A). The 0042-6822/00 $35.00 Copyright © 2000 by Academic Press 444 All rights of reproduction in any form reserved. TEMPLATE-DEPENDENT EXTRACTS FROM N. benthamiana 445 tabacum (NT-1) protoplasts and plants (Kim and Hemen- way, 1996; Miller et al., 1998, 1999). Conserved oc- tanucleotide sequence elements located upstream of the two major PVX sgRNAs are important for sgRNA accu- mulation (Kim and Hemenway, 1997, 1999), and interac- tions between these elements and complementary ter- minal sequences are important for optimal plus-strand RNA accumulation. Elements in the 3Ј NTR also effect PVX RNA accumulation in NT-1 cells (Pillai-Nair, Kim, and Hemenway, unpublished data). The development of a soluble, template-dependent system would allow for mechanistic studies of PVX RNA synthesis in vitro and identification of protein compo- nents and activities necessary for PVX replication. An RdRp preparation from barley plants infected with an- other potexvirus, foxtail mosaic virus (FMV), was devel- oped, but treatment of these preparations with micrococ- cal nuclease for removal of endogenous template ren- dered them inactive (Rouleau et al., 1993). Previously, we isolated extracts containing membrane-bound PVX RdRp from Nicotiana tabacum, but also were not able to elim- inate the endogenous viral RNA (Doronin and Hemen- way, 1996). Li et al. (1998) recently demonstrated tem- plate-dependent RdRp activity in Escherichia coli trans- FIG. 1. PVX genome organization and transcripts derived from PVX formed with the PVX replicase protein using short PVX cDNA clones. A illustrates the PVX genome, depicting five open read- templates; however, this system cannot be utilized to ing frames as boxes and the two major subgenomic RNAs as arrows study the in vivo composition of the replication complex. below the genome. Transcripts utilized for template-dependent RdRp assays were derived from various PVX cDNA clones shown in B. Here we report the isolation and solubilization of a tem- Plus-strand RNA templates were derived from wild-type pMON8453, plate-dependent RdRp activity isolated from Nicotiana p32 (containing an internal deletion of most of ORF 1, as noted by benthamiana plants infected with PVX that supports RNA dotted line), and ⌬84 (lacking the first 84 nucleotides of the 5Ј end) by synthesis from both plus- and minus-strand PVX tem- transcription with bacteriophage T7 RNA polymerase (shown as arrow plates. to left) of SpeI-digested plasmids. These transcripts contain 17 A residues and a G residue (from the SpeI site) at their 3Ј termini. Truncated plus-strand transcripts lacking the 3Ј region of the PVX RESULTS AND DISSUSSION genome were generated by transcription of ⌬84 digested with BstEII. Full-length minus-strand transcripts were obtained by transcription of Products produced from endogenous templates are BstBI-digested p75 with with bacteriophage SP6 RNA polymerase. primarily double-stranded With the ultimate goal of developing an extract con- first ORF encodes a 165-kDa protein (P1) that has ho- taining a template-dependent RdRp, we first developed a mology to other known RNA-dependent RNA polymerase membrane-containing RdRp preparation from N. proteins (Rozanov et al., 1992) and is the only viral protein benthamiana plants inoculated with PVX. Similar to the required for RNA synthesis in tobacco (Longstaff et al., procedure published for TMV (Osman and Buck, 1996), a 1993). Three internal reading frames (ORFs 2–4), referred P30 pellet was resuspended and purified through a su- to as the triple gene block, encode proteins involved in crose density gradient. Similar to the TMV system, anal- cell-to-cell movement (Beck et al., 1991; Angell et al., ysis of RdRp activity on endogenous PVX templates in- 1996). ORF 5 encodes the coat protein, which functions dicated that the near-colorless, sucrose gradient fraction in cell-to-cell movement (Chapman et al., 1992; Baul- 3 (F3) and the dark green fraction 4 (F4) contained the combe et al., 1995) and encapsidation. Replication of peak of activity (data not shown). As indicated in Fig. 2 PVX in plant tissue results in the production of genomic- (lane 3), analysis of the RNA products using F3 from length plus- and minus-sense RNAs, two major plus- infected plants (Inf) on a denaturing gel indicated RNAs sense subgenomic RNAs, and corresponding double- migrating at approximately 6.4, 2.5, and 0.9 kb. Products stranded RNAs (Dolja et al., 1987). We have demon- treated with S1 nuclease prior to electrophoresis exhib- strated that sequence elements, as well as a stem–loop ited a similar profile (Fig. 2, lane 4), indicating that these structure located in the 5Ј nontranslated region of the products are primarily double-stranded. In contrast, ex- PVX genome, are required for both genomic and sub- tracts from mock inoculated plants (M), did not support genomic plus-strand RNA accumulation in Nicotiana synthesis of these reaction products (lane 2). This profile 446 PLANTE ET AL. nuclease or treatment with KCl in the presence of deter- gents did not significantly remove the endogenous tem- plates (data not shown).
Recommended publications
  • Satellite RNA-Mediated Resistance to Turnip Crinkle Virus in Arabidopsis Lnvolves a Reduction in Virus Movement
    The Plant Cell, Vol. 9, 2051-2063, November 1997 O 1997 American Society of Plant Physiologists Satellite RNA-Mediated Resistance to Turnip Crinkle Virus in Arabidopsis lnvolves a Reduction in Virus Movement Qingzhong Kong, Jianlong Wang, and Anne E. Simon’ Department of Biochemistry and Molecular Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts O1 003-4505 Satellite RNAs (sat-RNAs) are parasites of viruses that can mediate resistance to the helper virus. We previously showed that a sat-RNA (sat-RNA C) of turnip crinkle virus (TCV), which normally intensifies symptoms of TCV, is able to attenuate symptoms when TCV contains the coat protein (CP) of cardamine chlorotic fleck virus (TCV-CPccw).We have now determined that sat-RNA C also attenuates symptoms of TCV containing an alteration in the initiating AUG of the CP open reading frame (TCV-CPm). TCV-CPm, which is able to move systemically in both the TCV-susceptible ecotype Columbia (Col-O) and the TCV-resistant ecotype Dijon (Di-O), produced a reduced level of CP and no detectable virions in infected plants. Sat-RNA C reduced the accumulation of TCV-CPm by <25% in protoplasts while reducing the level of TCV-CPm by 90 to 100% in uninoculated leaves of COLO and Di-O. Our results suggest that in the presence of a re- duced level of a possibly altered CP, sat-RNA C reduces virus long-distance movement in a manner that is independent of the salicylic acid-dependent defense pathway. INTRODUCTION Plants exhibit different types of resistance to plant viruses, on virus association for replication and spread in plants.
    [Show full text]
  • Energetics of Quasiequivalence: Computational Analysis of Protein-Protein Interactions in Icosahedral Viruses
    546 Biophysical Journal Volume 74 January 1998 546–558 Energetics of Quasiequivalence: Computational Analysis of Protein-Protein Interactions in Icosahedral Viruses Vijay S. Reddy,* Heidi A. Giesing,* Ryan T. Morton,* Abhinav Kumar,* Carol Beth Post,# Charles L. Brooks, III,* and John E. Johnson* *Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, and #Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907 USA ABSTRACT Quaternary structure polymorphism found in quasiequivalent virus capsids provides a static framework for studying the dynamics of protein interactions. The same protein subunits are found in different structural environments within these particles, and in some cases, the molecular switching required for the polymorphic quaternary interactions is obvious from high-resolution crystallographic studies. Employing atomic resolution structures, molecular mechanics, and continuum electrostatic methods, we have computed association energies for unique subunit interfaces of three icosahedral viruses, black beetle virus, southern bean virus, and human rhinovirus 14. To quantify the chemical determinants of quasiequivalence, the energetic contributions of individual residues forming quasiequivalent interfaces were calculated and compared. The potential significance of the differences in stabilities at quasiequivalent interfaces was then explored with the combinatorial assembly approach. The analysis shows that the unique association energies computed for each virus
    [Show full text]
  • Synthesis of Potato Virus X Rnas by Membrane- Containing Extracts
    JOURNAL OF VIROLOGY, July 1996, p. 4795–4799 Vol. 70, No. 7 0022-538X/96/$04.0010 Copyright q 1996, American Society for Microbiology Synthesis of Potato Virus X RNAs by Membrane- Containing Extracts SERGEY V. DORONIN AND CYNTHIA HEMENWAY* Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622 Received 16 October 1995/Accepted 30 March 1996 Membrane-containing extracts isolated from tobacco plants infected with the plus-strand RNA virus, potato virus X (PVX), supported synthesis of four major, high-molecular-weight PVX RNA products (R1 to R4). Nuclease digestion and hybridization studies indicated that R1 and R2 are a mixture of partially single- stranded replicative intermediates and double-stranded replicative forms. R3 and R4 are double-stranded products containing sequences typical of the two major PVX subgenomic RNAs. The newly synthesized RNAs were demonstrated to have predominantly plus-strand polarity. Synthesis of these products was remarkably stable in the presence of ionic detergents. Potato virus X (PVX), the type member of the Potexvirus tracts were derived from Nicotiana tabacum leaves at 7 days genus, is a flexuous rod-shaped particle containing a single, postinoculation by a procedure similar to that described by genomic RNA of 6.4 kb that is capped and polyadenylated (21, Lurie and Hendrix (15). Inoculated and upper leaves (50 g) 27). Of the five open reading frames (ORFs), the first encodes were homogenized in 150 ml of buffer I (50 mM Tris-HCl [pH a 165-kDa protein (P1) that has homology to other known 7.5], 250 mM sucrose, 5 mM MgCl2, 1 mM EDTA, 10 mM RNA-dependent RNA polymerase (RdRp) proteins (23).
    [Show full text]
  • The Capsid Protein P38 of Turnip Crinkle Virus Is Associated with The
    Virology 462-463 (2014) 71–80 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro The capsid protein p38 of turnip crinkle virus is associated with the suppression of cucumber mosaic virus in Arabidopsis thaliana co-infected with cucumber mosaic virus and turnip crinkle virus Ying-Juan Chen a,b, Jing Zhang a, Jian Liu a, Xing-Guang Deng a, Ping Zhang a, Tong Zhu a, Li-Juan Chen a, Wei-Kai Bao b, De-Hui Xi a,n, Hong-Hui Lin a,n a Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China b Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China article info abstract Article history: Infection of plants by multiple viruses is common in nature. Cucumber mosaic virus (CMV) and Turnip Received 28 February 2014 crinkle virus (TCV) belong to different families, but Arabidopsis thaliana and Nicotiana benthamiana are Returned to author for revisions commonly shared hosts for both viruses. In this study, we found that TCV provides effective resistance to 9 May 2014 infection by CMV in Arabidopsis plants co-infected by both viruses, and this antagonistic effect is much Accepted 27 May 2014 weaker when the two viruses are inoculated into different leaves of the same plant. However, similar antagonism is not observed in N. benthamiana plants. We further demonstrate that disrupting the RNA Keywords: silencing-mediated defense of the Arabidopsis host does not affect this antagonism, but capsid protein Cucumber mosaic virus (CP or p38)-defective mutant TCV loses the ability to repress CMV, suggesting that TCV CP plays an Turnip crinkle virus important role in the antagonistic effect of TCV toward CMV in Arabidopsis plants co-infected with both Arabidopsis thaliana viruses.
    [Show full text]
  • Construction of a Turnip Crinkle Virus Mutant
    CONSTRUCTION OF A TURNIP CRINKLE VIRUS MUTANT A Major Qualifying Report: Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science by Nathaniel Gordon Freedman Date: April 24, 2008 Approved: Professor Kristin Wobbe, Major Advisor Abstract: An important immune response to pathogens in A. thaliana and other plants is the hypersensitive response (HR). A HR is a form of programmed cell death that prevents the spread of an infection by necrosis of tissue at the site of infection. Turnip Crinkle Virus (TCV) is unique in the Carmovirus genus for its ability to suppress the HR in systemic infection of A. thaliana. It is hypothesized that the p8 viral movement protein of TCV is responsible for this ability, due to that protein’s nuclear localization. It should be possible to test if p8 suppresses the HR by replacing it with a homologous gene. Genetic modifications were made to an expression vector containing a dsDNA copy of the TCV ssRNA genome, pT1D1ΔL. The viral genome was altered to eliminate expression of p8. The inserted homologous gene was p7, from the related Carnation Mottle Virus. Single- nucleotide substitution was done with PCR to remove the start codon of p8.A DNA cassette based on the p7 gene was constructed from oligonucleotides. The cassette was the template for insertion of p7 into the vector. Recombination of the p7 gene and the expression vector was accomplished with PCR and New England Biolab’s USER enzyme. ii Acknowledgments: I would like to thank Professor Kristin Wobbe for giving me the opportunity to work on this project, and for her constant advice and encouragement.
    [Show full text]
  • Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins, Second Edition Andreas D
    BIOINFORMATICS A Practical Guide to the Analysis of Genes and Proteins SECOND EDITION Andreas D. Baxevanis Genome Technology Branch National Human Genome Research Institute National Institutes of Health Bethesda, Maryland USA B. F. Francis Ouellette Centre for Molecular Medicine and Therapeutics Children’s and Women’s Health Centre of British Columbia University of British Columbia Vancouver, British Columbia Canada A JOHN WILEY & SONS, INC., PUBLICATION New York • Chichester • Weinheim • Brisbane • Singapore • Toronto BIOINFORMATICS SECOND EDITION METHODS OF BIOCHEMICAL ANALYSIS Volume 43 BIOINFORMATICS A Practical Guide to the Analysis of Genes and Proteins SECOND EDITION Andreas D. Baxevanis Genome Technology Branch National Human Genome Research Institute National Institutes of Health Bethesda, Maryland USA B. F. Francis Ouellette Centre for Molecular Medicine and Therapeutics Children’s and Women’s Health Centre of British Columbia University of British Columbia Vancouver, British Columbia Canada A JOHN WILEY & SONS, INC., PUBLICATION New York • Chichester • Weinheim • Brisbane • Singapore • Toronto Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. Copyright ᭧ 2001 by John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher.
    [Show full text]
  • The 3′ Untranslated Region of a Plant Viral RNA Directs Efficient
    pathogens Article The 30 Untranslated Region of a Plant Viral RNA Directs Efficient Cap-Independent Translation in Plant and Mammalian Systems Jelena J. Kraft 1,2, Mariko S. Peterson 3,4, Sung Ki Cho 1,5, Zhaohui Wang 1,6, Alice Hui 7, Aurélie M. Rakotondrafara 8, Krzysztof Treder 9, Cathy L. Miller 10 and W. Allen Miller 1,3,7,* 1 Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA; [email protected] (J.J.K.); [email protected] (S.K.C.); [email protected] (Z.W.) 2 Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA 3 Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; [email protected] 4 Yerkes National Primate Research Center, Emory Vaccine Center 2009, 954 Gatewood Rd NE, Atlanta, GA 30329, USA 5 Dura-Line, 1355 Carden Farm Dr., Clinton, TN 37716, USA 6 Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA 7 Interdepartmental Plant Biology Program, Iowa State University, Ames, IA 50011, USA; [email protected] 8 Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA; [email protected] 9 Laboratory of Molecular Diagnostic and Biochemistry, Bonin Research Center, Plant Breeding and Acclimatization Institute–National Research Institute, 76-009 Bonin, Poland; [email protected] 10 Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-515-294-2436 Received: 9 January 2019; Accepted: 23 February 2019; Published: 28 February 2019 Abstract: Many plant viral RNA genomes lack a 50 cap, and instead are translated via a cap-independent translation element (CITE) in the 30 untranslated region (UTR).
    [Show full text]
  • Characterization of Infection in Drosophila Following Oral Challenge with the Drosophila C Virus and Flock House Virus
    Characterization of infection in Drosophila following oral challenge with the Drosophila C virus and Flock House virus Aleksej Stevanovic Bachelor of Science (Honours) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Biological Sciences i Abstract Understanding antiviral processes in infected organisms is of great importance when designing tools targeted at alleviating the burden viruses have on our health and society. Our understanding of innate immunity has greatly expanded in the last 10 years, and some of the biggest advances came from studying pathogen protection in the model organism Drosophila melanogaster. Several antiviral pathways have been found to be involved in antiviral protection in Drosophila however the molecular mechanisms behind antiviral protection have been largely unexplored and poorly characterized. Host-virus interaction studies in Drosophila often involve the use of two model viruses, Drosophila C virus (DCV) and Flock House virus (FHV) that belong to the Dicistroviridae and Nodaviridae family of viruses respectively. The majority of virus infection assays in Drosophila utilize injection due to the ease of manipulation, and due to a lack of routine protocols to investigate natural routes of infection. Injecting viruses may bypass the natural protection mechanisms and can result in different outcome of infection compared to oral infections. Understanding host-virus interactions following a natural route of infection would facilitate understanding antiviral protection mechanisms and viral dynamics in natural populations. In the 2nd chapter of this thesis I establish a method of orally infecting Drosophila larvae with DCV to address the effects of a natural route of infection on antiviral processes in Drosophila.
    [Show full text]
  • Characterization of the Nodamura Virus RNA Dependent RNA
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2015-01-01 Characterization of the Nodamura virus RNA dependent RNA polymerase and Formation of RNA Replication Complexes in Mammalian Cells Vincent Ulysses Gant University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Biochemistry Commons, Molecular Biology Commons, and the Virology Commons Recommended Citation Gant, Vincent Ulysses, "Characterization of the Nodamura virus RNA dependent RNA polymerase and Formation of RNA Replication Complexes in Mammalian Cells" (2015). Open Access Theses & Dissertations. 1047. https://digitalcommons.utep.edu/open_etd/1047 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. CHARACTERIZATION OF THE NODAMURA VIRUS RNA DEPENDENT RNA POLYMERASE AND FORMATION OF RNA REPLICATION COMPLEXES IN MAMMALIAN CELLS VINCENT ULYSSES GANT JR. Department of Biological Sciences APPROVED: Kyle L. Johnson, Ph.D., Chair Ricardo A. Bernal, Ph.D. Kristine M. Garza, Ph.D. Kristin Gosselink, Ph.D. German Rosas-Acosta, Ph. D. Jianjun Sun, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © By Vincent Ulysses Gant Jr. 2015 Dedication I want to dedicate my dissertation to my beautiful mother, Maria Del Carmen Gant. My mother lived her life to make sure all of her children were taken care of and stayed on track. She always pushed me to stay on top of my education and taught me to grapple with life.
    [Show full text]
  • A Nuclear Fraction of Turnip Crinkle Virus Capsid Protein Is Important for Elicitation of the Host Resistance Response Sung-Hwan Kang University of Florida
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 2015 A nuclear fraction of turnip crinkle virus capsid protein is important for elicitation of the host resistance response Sung-Hwan Kang University of Florida Feng Qu The Ohio State University Thomas J. Morris University of Nebraska at Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/virologypub Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, Infectious Disease Commons, Medical Immunology Commons, Medical Pathology Commons, and the Virology Commons Kang, Sung-Hwan; Qu, Feng; and Morris, Thomas J., "A nuclear fraction of turnip crinkle virus capsid protein is important for elicitation of the host resistance response" (2015). Virology Papers. 390. https://digitalcommons.unl.edu/virologypub/390 This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HHS Public Access Author manuscript Author Manuscript Author ManuscriptVirus Res Author Manuscript. Author manuscript; Author Manuscript available in PMC 2016 December 02. Published in final edited form as: Virus Res. 2015 December 2; 210: 264–270. doi:10.1016/j.virusres.2015.08.014. A nuclear fraction of turnip crinkle virus capsid protein is important for elicitation of the host resistance response Sung-Hwan Kang1,3, Feng Qu1,2, and T. Jack Morris1,* 1School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588 2Department of Plant Pathology, The Ohio State University, Wooster, OH 44691 Abstract The N-terminal 25 amino acids (AAs) of turnip crinkle virus (TCV) capsid protein (CP) are recognized by the resistance protein HRT to trigger a hypersensitive response (HR) and systemic resistance to TCV infection.
    [Show full text]
  • The 39 End of Turnip Crinkle Virus Contains a Highly Interactive
    Downloaded from rnajournal.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press The 39 end of Turnip crinkle virus contains a highly interactive structure including a translational enhancer that is disrupted by binding to the RNA-dependent RNA polymerase XUEFENG YUAN,1 KERONG SHI,1 ARTURAS MESKAUSKAS,1,2 and ANNE E. SIMON1 1Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA 2Department of Biotechnology and Microbiology, Vilnius University, Vilnius, Lithuania ABSTRACT Precise temporal control is needed for RNA viral genomes to translate sufficient replication-required products before clearing ribosomes and initiating replication. A 39 translational enhancer in Turnip crinkle virus (TCV) overlaps an internal T-shaped structure (TSS) that binds to 60S ribosomal subunits. The higher-order structure in the region was examined through alteration of critical sequences revealing novel interactions between an H-type pseudoknot and upstream residues, and between the TSS and internal and terminal loops of an upstream hairpin. Our results suggest that the TSS forms a stable scaffold that allows for simultaneous interactions with external sequences through base pairings on both sides of its large internal symmetrical loop. Binding of TCV RNA-dependent RNA polymerase (RdRp) to the region potentiates a widespread conformational shift with substantial rearrangement of the TSS region, including the element required for efficient ribosome binding. Degrading the RdRp caused the RNA to resume its original conformation, suggesting that the initial conformation is thermodynamically favored. These results suggest that the 39 end of TCV folds into a compact, highly interactive structure allowing RdRp access to multiple elements including the 39 end, which causes structural changes that potentiate the shift between translation and replication.
    [Show full text]
  • 7348 8 Virus. Family Retroviridae, Subfamily Oncovirinae, Genus Type
    B 7348 8 virus. Family Retroviridae, subfamily particles which are cylindrical with two rounded Oncovirinae, genus Type B Oncovirus group. ends, e.g. PLANT RHABDOVIRUSES, BACULO­ Present in MCF-7 cells, a line derived from a pa­ VIRUSES. tient with disseminated mammary adenocar­ cinoma. Related to mouse mammary tumour vi­ Bacillus 'baculovirus'. Unclassified virus, mor­ rus but no relationship with the Type C oncovirus phologically similar to a NON-OCCLUDED BACULO­ group. VIRUS, observed in mid-gut epithelial cells of the stick insect, Bacillus rossius. Particles in section 8-type inclusion body. Inclusion bodies ob­ consist of a rod-shaped nucleocapsid (210 x 50- served in the cytoplasm of vertebrate POXVIRUS 60 nm.) surrounded by a membrane. infected cells, representing sites of virus synthe­ Scali V. etal. (1980)J. Invertebr. Pathol. 35, 109. sis; characteristic of all productive poxvirus in­ fections. bacteriocinogen. Genetic determinant in some bacteria (often p1asmids) which specifies the 8-type virus particles. A morphologically de­ production of a BACfERIOCIN. The determinants fined group of enveloped RNA virus particles, for particulate bacteriocins are specified by chro­ seen outside the cells in mouse mammary carci­ mosomal genes and behave like a defective PRO­ noma. They have a dense body or core 40-60 nm. PHAGE. Particulate bacteriocin production (which in diameter which is contained in an envelope 90- is normally suppressed) can be induced by agents 120 nm. in diameter. The particles bud through such as UV light which normally 'activate' the cell membrane. The prototype member is LYSOGENIC phages. MOUSE MAMMARY TUMOUR VIRUS. See A-, C-, D-TYPE Hardy, K.
    [Show full text]