Visual Loss Due to Progressive Multifocal Leukoencephalopathy In

Total Page:16

File Type:pdf, Size:1020Kb

Visual Loss Due to Progressive Multifocal Leukoencephalopathy In CLINICOPATHOLOGIC REPORTS, CASE REPORTS, AND SMALL CASE SERIES SECTION EDITOR: W. RICHARD GREEN, MD but there was a single nucleotide visible, fine-linear white scarring in Visual Loss Due to substitution (C155T) in exon 1 of this area (Figure 2). In the most se- Progressive Multifocal the WAS gene. verely affected gyri, the cortex was Leukoencephalopathy Six weeks later his vision was bi- also involved and had a darker color, in a Congenital lateral finger counting. A magnetic with apparent expansion and soften- resonance imaging (MRI) scan ing of its affected parts. Immunodeficiency Disorder showed scattered areas of white- Although the individual le- matter foci, predominantly peri- sions were present throughout the A 20-year-old man with Wiskott- pheral and not periventricular, on cerebral hemispheres, they were Aldrich syndrome (WAS) initially de- proton density and T2-weighted most frequent bilaterally in the oc- veloped a mild visual disturbance that scans. He was given intravenous cipital poles, which were also the progressed to blindness, increasing methylprednisolone sodium succi- major site of linear cortico–white- neurological deficits, and death nate because of the possibility of de- matter junction lesions and scar- within 4 months. Wiskott-Aldrich myelination. No improvement oc- ring as well as the regions of diffuse syndrome is an X-linked immuno- curred, and he was registered as blind. cortical involvement. A microsco- deficiency disorder characterized by Reduced sensation and generalized pic examination of the brain sec- thrombocytopenia, eczema, and sus- mild weakness (level 4-5) devel- tions showed small, spherical, white ceptibility to infection.1 This case il- oped in his right-hand side and face. matter lesions that were atypical of lustrates the difficulties in reaching Reflexes were normal and he had no PML because they were associated the final diagnosis of progressive mul- dysphasia. with a considerable perivascular and tifocal leukoencephalopathy (PML) A repeat MRI scan showed an in- parenchymal inflammatory infil- in this individual and its unusual his- crease in the number of small high- trate (Figure 3). The inflamma- topathologic features. signal foci together with more con- tory infiltrate was mostly lympho- fluent areas of high signal intensity cytic in character but also contained Report of a Case. A 20-year-old and a scalloped edge in the left oc- plasma cells that were occasionally white man with WAS had a 1-month cipital region (Figure 1). Rapid de- binuclear. However, further exami- history of decline in vision. Nine terioration occurred with protracted nation indicated the presence of di- months previously, he had omitted focal seizures, total blindness, loss of agnostic enlarged magenta-colored 3 consecutive doses of immunoglob- consciousness, and death. A postmor- oligodendrocyte nuclei around the ulin, which he had been receiving tem histopathologic examination of periphery of the foci of demyelin- every 3 weeks since the age of 12 the brain revealed the papovavirus ation, containing the papovavirus years. This was restarted when he de- particles associated with PML. particles associated with PML veloped lethargy and malaise. His The fresh brain was examined (Figure 4). Other differences from mother had been diagnosed with and then prepared in slices. Tissue un- typical examples of PML were that multiple sclerosis at age 26 years. derwent light microscopic examina- the pleomorphic astrocytic reac- An ophthalmological examina- tion and was embedded in paraffin tion within the lesions was less florid tion revealed a visual acuity of 20/17 wax, sectioned, and stained with he- and that foamy macrophages were OD and 20/20 OS with normal pu- matoxylin-eosin. The brain weighed not as conspicuous, although there pillary reactions. Color vision was ab- 1570 g. External examination showed were numerous mononuclear cells normal, and visual field testing mild diffuse vascular congestion but within the larger lesions. In a few showed bilateral enlarged blind spots no focal lesions. Brain slices had large cases the isolated lesions had the with paracentral scotomata. Fundi numbers of small, gray, circular le- character of “burnt-out” lesions, appeared grossly normal. Results of sions in the white matter that were 1 with no enlarged oligodendro- fundus fluorescein angiography were to 3 mm in diameter, many of which cytes, no significant inflammatory re- unremarkable. Electrodiagnostic were close to the cortico–white- action, and a predominantly fi- evaluation was normal apart from de- matter junction. In some cases the le- brous gliosis. The linear lesions in layed visual evoked potentials, which sions were also visible within the cor- the cortico–white-matter junction were suggestive of demyelination. tical ribbon. The lesions had the had the same histological character- The patient’s biochemistry and appearance of small regions of demy- istics as the spherical lesions. The complete blood cell count were nor- elination and resembled the indi- diffuse cortical lesions showed de- mal except for a low platelet count vidual lesions of PML. In addition to myelination within the cortex and (123103/µL). Mutational analysis the spherical lesions, there were also reactive astrocytosis extending for Leber hereditary optic neuropa- irregular linear lesions along the cor- through the neuropil and around the thy and for the WAS protein gene tico–white-matter junction that in neurons, although no enlarged oli- demonstrated no Leber mutation, some instances were accompanied by godendrocyte nuclei were identi- (REPRINTED) ARCH OPHTHALMOL / VOL 119, SEP 2001 WWW.ARCHOPHTHALMOL.COM 1376 ©2001 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/27/2021 Figure 1. Second magnetic resonance imaging scan (17 weeks after initial Figure 2. Fresh brain slices showing large numbers of small, gray, circular symptoms) showing an increase in the number of small high signal foci with lesions in the white matter close to the cortico–white-matter junction (white more confluent areas of high signal intensity, a scalloped edge in the left arrows). Also seen are irregular linear lesions along the cortico–white-matter occipital region, and a serpiginous scalloped appearance at the gray junction (black arrowheads). matter/white matter interface involving the arcuate fibers. Figure 3. Microscopic picture showing small, spherical, white matter lesions Figure 4. Microscopic section showing the presence of diagnostic enlarged with marked vascular prominence and parenchymal infiltrate homogenous oligodendrocyte nuclei, which contain the papovavirus particles (hematoxylin-eosin, original magnification 320). associated with progressive multifocal leukoencephalopathy (arrows) at the periphery of the focus of demyelination (hematoxylin-eosin, original magnification 3100). fied within the affected regions of the hereditary optic neuropathy or the sclerosis,2 electrodiagnostic test re- cortical ribbon. possibility of a contiguous deletion in sults were was suggestive of optic the same region as the WAS gene, nerve demyelination. Visual distur- Comment. Delay in the diagnosis of leading to a phenotypic complex of bance in multiple sclerosis is almost PML was probably due to visual WAS and perhaps an X-linked cone always due to optic nerve rather than symptoms dominating this case, late dystrophy, were explored and ex- cortical involvement. The reverse is development of neurological signs, cluded. true for PML. Despite increasing cen- and the outstanding longevity and Although the lesions that ap- tral scotomata, the preserved pupil- relative good health of the patient. In- peared on the initial MRI scan were lary reflexes should have directed us herited conditions including Leber not completely typical of multiple earlier to a cortical etiology. Typical (REPRINTED) ARCH OPHTHALMOL / VOL 119, SEP 2001 WWW.ARCHOPHTHALMOL.COM 1377 ©2001 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/27/2021 PML features became more identi- At the time of referral 6 days fiable by the second MRI scan Complication From Use later, the patient’s visual acuity was (Figure 1). The histopathologic char- of Alcohol to Treat 20/200 with pinhole approxima- acteristics of this case include an un- Epithelial Ingrowth tion, and she had a large central epi- usual variant of PML: there was a thelial defect. The edematous flap After Laser-Assisted marked inflammatory response, and made the interface difficult to exam- the demyelinating lesions had an un- In Situ Keratomileusis ine. Her epithelial defect improved usual distribution. The inflamma- during the next week with conser- tory response was presumably a re- Epithelial ingrowth occurs in up to vative treatment, and her visual ac- flection of the immune status of this 4.3% of patients following laser- tivity improved to 20/80 with pin- 1 patient. Whereas most cases of PML assisted in situ keratomileusis. Treat- hole approximation. Four days later, are associated with immune sup- ment varies from observation to lift- the patient returned with 80% melt- pression, no matter what the cause, ing the flap and scraping away the ing of the flap (Figure 1). The re- this case is unusual because a epithelium. With recurrence, addi- maining nasal and temporal pieces of marked inflammatory response was tional treatment options include the the flap were removed and sent to the noted.3,4 A study of ophthalmic signs use of an excimer laser,
Recommended publications
  • Un-Explained Visual Loss Following Silicone Oil Removal
    Roca et al. Int J Retin Vitr (2017) 3:26 DOI 10.1186/s40942-017-0079-6 International Journal of Retina and Vitreous ORIGINAL ARTICLE Open Access Un‑explained visual loss following silicone oil removal: results of the Pan American Collaborative Retina Study (PACORES) Group Jose A. Roca1, Lihteh Wu2* , Maria Berrocal3, Francisco Rodriguez4, Arturo Alezzandrini5, Gustavo Alvira6, Raul Velez‑Montoya7, Hugo Quiroz‑Mercado7, J. Fernando Arevalo8, Martín Serrano9, Luiz H. Lima10, Marta Figueroa11, Michel Farah10 and Giovanna Chico1 Abstract Purpose: To report the incidence and clinical features of patients that experienced un-explained visual loss following silicone oil (SO) removal. Methods: Multicenter retrospective study of patients that underwent SO removal during 2000–2012. Visual loss of 2 lines was considered signifcant. ≥ Results: A total of 324 eyes of 324 patients underwent SO removal during the study period. Forty two (13%) eyes sufered a signifcant visual loss following SO removal. Twenty three (7.1%) of these eyes lost vision secondary to known causes. In the remaining 19 (5.9%) eyes, the loss of vision was not explained by any other pathology. Eleven of these 19 patients (57.9%) were male. The mean age of this group was 49.2 16.4 years. Eyes that had an un-explained visual loss had a mean IOP while the eye was flled with SO of 19.6 6.9 mm± Hg. The length of time that the eye was flled with SO was 14.8 4.4 months. In comparison, eyes that± did not experience visual loss had a mean IOP of 14 7.3 mm Hg (p < 0.0002)± and a mean tamponade duration of 9.3 10.9 months (p < 0.0001).
    [Show full text]
  • Acute Hydrops Following Penetrating Keratoplasty in a Keratoconic Patient
    Acute Hydrops following PK • Baradaran-Rafiee et al Iranian Journal of Ophthalmology • Volume 20 • Number 4 • 2008 Acute Hydrops following Penetrating Keratoplasty in a Keratoconic Patient Alireza Baradaran-Rafiee, MD1 • Manijeh Mahdavi, MD2 • Sepehr Feizi, MD3 Abstract Purpose: To report a case with history of penetrating keratoplasty (PK) for keratoconus that developed acute hydrops in the recipient and donor cornea Methods: A 46-year-old man, with history of bilateral keratoconus, who had undergone corneal transplantation in his left eye, presented with complaints of sudden visual reduction, photophobia, redness and pain of the left eye. Results: Review of his clinical course, slit-lamp biomicroscopy, laboratory evaluations including confocal microscopy and ultrasound biomicroscopy revealed acute hydrops in the graft. Second corneal transplantation was done for his left eye and pathologic examination confirmed the diagnosis. Conclusion: Acute hydrops can occur after PK in patients with keratoconus. Although this condition is not common, it should be considered as a differential diagnosis of graft rejection. Keywords: Acute Hydrops, Keratoconus, Corneal Transplantation Iranian Journal of Ophthalmology 2008;20(4):49-53 Introduction Keratoconus is a degenerative, One of the complications of advanced non-inflammatory disease of the cornea, with keratoconus is acute hydrops. Affected onset generally at puberty. It is progressive in patients suffer from acute visual loss with pain 20% of cases and can be treated by lamellar and photophobia. On slit-lamp examination, or penetrating keratoplasty (PK). Its incidence conjunctival hyperemia and diffuse corneal in general population is reported to be about edema with intrastromal cystic spaces are 1/2000.1 Changes in corneal collagen visible.
    [Show full text]
  • Red Spot • Important Is the Time Period from the Event • Therapy Is Reasonable If the Patient Is Treated Within the First 6 Hours
    ACUTE VISUAL LOSS KAROLÍNA SKORKOVSKÁ VISUAL LOSS • CENTRAL RETINAL ARTERY OCCLUSION • CENTRAL RETINAL VEIN OCCLUSION • RETINAL DETACHMENT • VITREOUS HAEMORRHAGE • OPTIC NEURITIS • AION VISUAL LOSS - PATIENT´S HISTORY • UNILATERAL / BILATERAL • SUDDEN / SLOWLY PROGRESSIVE • PAIN • COMPLAINTS (FOGGY VISION, FLOATERS, CURTAIN…) • OTHER SYMPTOMS (FEVER, WEIGHT LOSS, REFRACTIVE CHANGE, …) CATARACT • SLOWLY PROGRESSIVE VISUAL LOSS • FOGGY VISION • CHANGE IN REFRACTIVE ERROR (INDEX MYOPIA) • CATARACT VISIBLE ON SLIT LAMP • THERAPY: CATARACT EXTRACTION RETINAL ARTERY OCCLUSION • SUDDEN, UNILATERAL, PAINLESS LOSS OF VISION • VISUAL ACUITY MAY BE „NO LIGHT PERCEPTION“ • BRANCH / CENTRAL RETINAL ARTERY OCCLUSION • RETINAL ISCHEMIA WITH CHERRY RED SPOT • IMPORTANT IS THE TIME PERIOD FROM THE EVENT • THERAPY IS REASONABLE IF THE PATIENT IS TREATED WITHIN THE FIRST 6 HOURS RETINAL ARTERY OCCLUSION - COMPLICATIONS • POOR PROGNOSIS • PERMANENT LOSS OF VISION • OPTIC DISC ATROPHY • NEOVASCULARISATION GLAUCOMA RETINAL ARTERY OCCLUSION - THERAPY • LOWERING OF INTRAOCULAR PRESSURE • RETROBULBAR INJECTION OF VASODILATORS • PARACENTHESIS • SYSTEMIC TROMBOLYSIS (DEPARTMENT OF INTERNAL MEDICINE) • CHECK-UP OF RISK FACTORS OF ISCHEMIA / TROMBOSIS RETINAL VEIN OCCLUSION • SUDDEN, PAINLESS, UNILATERAL VISUAL LOSS • VISUAL ACUITY USUALLY NOT AS MUCH AFFECTED AS IN CRAO • BRANCH / CENTRAL RETINAL VEIN OCCLUSION • OFTEN CARDIOVASCULAR RISK FACTORS (HYPERTENSION, DIABETES, HYPERLIPIDEMIA, ISCHEMIC HEART DISEASE,…) • RETINAL HAEMORHAGES, OPTIC NERVE HEAD OEDEMA, RETINAL
    [Show full text]
  • A Review of Central Retinal Artery Occlusion: Clinical Presentation And
    Eye (2013) 27, 688–697 & 2013 Macmillan Publishers Limited All rights reserved 0950-222X/13 www.nature.com/eye 1 2 1 2 REVIEW A review of central DD Varma , S Cugati , AW Lee and CS Chen retinal artery occlusion: clinical presentation and management Abstract Central retinal artery occlusion (CRAO) is an that in turn place an individual at risk of future ophthalmic emergency and the ocular ana- cerebral stroke and ischaemic heart disease. logue of cerebral stroke. Best evidence reflects Although analogous to a cerebral stroke, there that over three-quarters of patients suffer is currently no guideline-endorsed evidence for profound acute visual loss with a visual acuity treatment. Current options for therapy include of 20/400 or worse. This results in a reduced the so-called ‘standard’ therapies, such as functional capacity and quality of life. There is sublingual isosorbide dinitrate, systemic also an increased risk of subsequent cerebral pentoxifylline or inhalation of a carbogen, stroke and ischaemic heart disease. There are hyperbaric oxygen, ocular massage, globe no current guideline-endorsed therapies, compression, intravenous acetazolamide and although the use of tissue plasminogen acti- mannitol, anterior chamber paracentesis, and vator (tPA) has been investigated in two methylprednisolone. None of these therapies randomized controlled trials. This review will has been shown to be better than placebo.5 describe the pathophysiology, epidemiology, There has been recent interest in the use of and clinical features of CRAO, and discuss tissue plasminogen activator (tPA) with two current and future treatments, including the recent randomized controlled trials on the 1Flinders Comprehensive use of tPA in further clinical trials.
    [Show full text]
  • Acute Visual Loss 5 Cédric Lamirel , Nancy J
    Acute Visual Loss 5 Cédric Lamirel , Nancy J. Newman , and Valérie Biousse Abstract Visual loss is a common symptom in neurologic emergencies. Although ocular causes of visual loss are usually identifi ed by eye care specialists, many patients appear in an emergency department or a neurologist’s offi ce when the ocular examination is normal or when it suggests a neurologic disorder. Indeed, many causes of monocular or binocular acute visual loss may reveal or precede a neurologic process. In this situation, a quick and simple clinical examination done at bedside in the emergency department allows the neurologist to localize the lesion and determine whether an urgent neurologic workup or further ophthalmologic consultation is necessary. Keywords Central retinal artery occlusion • Funduscopic examination • Optic neuropathy • Retinal emboli • Visual fi eld • Visual loss Acute vision changes typically precipitate emer- gency consultation. Although ocular causes are usually identifi ed by eye care specialists, many patients appear in an emergency department or a C. Lamirel , MD neurologist’s offi ce when the ocular examination Service d’ophtalmologie , Fondation Ophtalmologique is normal or when it suggests a neurologic disor- Adolphe Rothschild , Paris , France der. Indeed, many causes of monocular or binoc- e-mail: [email protected] ular acute visual loss may reveal or precede a N. J. Newman , MD • V. Biousse, MD () neurologic process. In this situation, a quick and Neuro-Ophthalmology Unit , simple clinical examination done at bedside in Emory University School of Medicine , Atlanta , GA , USA the emergency department allows the neurologist e-mail: [email protected]; [email protected] to localize the lesion and determine whether an K.L.
    [Show full text]
  • Approach to Acute Visual Loss
    APPROACH TO ACUTE VISUAL LOSS 11 : 2 Satish Khadilkar, Pramod Dhonde, Mumbai INTRODUCTION Acute visual loss is common in clinical practice. The symptom is very disturbing to patients and requires rapid clinical analysis and therapy, as it can be associated with significant morbidity. Etiologies of acute visual impairment range from retina to the occipital cortex, resulting in a plethora of presentations. For example in a case of retinal disease patient may feel as if a curtain is rising or dropping and in cases of occipital lesions, patients may give history of bumping into the objects without realization. Also, patients tend to mistake diplopia for visual loss, which needs careful analysis. Acute visual loss could either be monocular or binocular. Monocular loss is often related to local eye pathologies as glaucoma, uveitis, retinitis or neurological diseases like optic neuritis (ON) and anterior ischemic optic neuropathy (AION). Binocular diseases are usually associated with lesions affecting structures such as optic chiasma, lateral geniculate body, occipital radiations and occipital cortex. Pain is an important association of visual loss. Painful visual impairment is seen in ON, Tolosa Hunt Syndrome, orbital apex syndrome, pituitary apoplexy and glaucoma. On the other hand, diseases of the optic tracts, radiations, occipital cortex and AION tend to be painless. The natural history of the visual impairment is helpful in the differential diagnosis. Transient visual deficit is seen in vascular diseases, demyelinations, raised intracranial tension and hyper coagulable states. Lasting deficits are seen with, strokes, tumors and AION. Following cases will illustrate various clinical situations of acute visual impairment, encountered by clinicians.
    [Show full text]
  • Home>>Common Retinal & Ophthalmic Disorders
    Common Retinal & Ophthalmic Disorders Cataract Central Serous Retinopathy Cystoid Macular Edema (Retinal Swelling) Diabetic Retinopathy Floaters Glaucoma Macular degeneration Macular Hole Macular Pucker - Epiretinal Membrane Neovascular Glaucoma Nevi and Pigmented Lesions of the Choroid Posterior Vitreous Detachment Proliferative Vitreoretinopathy (PVR) Retinal Tear and Detachment Retinal Artery and Vein Occlusion Retinitis Uveitis (Ocular Inflammation) White Dot Syndromes Anatomy and Function of the Eye (Short course in physiology of vision) Cataract Overview Any lack of clarity in the natural lens of the eye is called a cataract. In time, all of us develop cataracts. One experiences blurred vision in one or both eyes – and this cloudiness cannot be corrected with glasses or contact lens. Cataracts are frequent in seniors and can variably disturb reading and driving. Figure 1: Mature cataract: complete opacification of the lens. Cause Most cataracts are age-related. Diabetes is the most common predisposing condition. Excessive sun exposure also contributes to lens opacity. Less frequent causes include trauma, drugs (eg, systemic steroids), birth defects, neonatal infection and genetic/metabolic abnormalities. Natural History Age-related cataracts generally progress slowly. There is no known eye-drop, vitamin or drug to retard or reverse the condition. Treatment Surgery is the only option. Eye surgeons will perform cataract extraction when there is a functional deficit – some impairment of lifestyle of concern to the patient. Central Serous Retinopathy (CSR) Overview Central serous retinopathy is a condition in which a blister of clear fluid collects beneath the macula to cause acute visual blurring and distortion (Figure 2). Central serous retinochoroidopathy Left: Accumulation of clear fluid beneath the retina.
    [Show full text]
  • Choroidal Vascular Occlusion in a Young Male Patient with Sickle Cell Trait
    Choroidal ischemia and sickle cell trait ·Letter to the Editor· Choroidal vascular occlusion in a young male patient with sickle cell trait Maria Kotoula, Eleni Papageorgiou, Foteini Xanthou, Sotirios Kalampalikis, Sofia Androudi, Evangelia E. Tsironi Department of Ophthalmology, University Hospital of Larissa, Fluorescence angiography (FA) showed mild RPE Mezourlo Area 41222, Larissa, Greece irregularities. Due to the discrepancy between the subtle Co-first authors: Maria Kotoula and Eleni Papageorgiou clinical findings and the visual acuity loss, an indocyanine Correspondence to: Eleni Papageorgiou. Department of green (ICG) angiography was performed, which demonstrated Ophthalmology, University Hospital of Larissa, Mezourlo Area subfoveal choroidal ischemia (Figure 2). OCT-A was not 41222, Larissa, Greece. [email protected] available at presentation of the patient. Received: 2017-06-18 Accepted: 2017-12-15 Further medical workup revealed mixed hyperlipidemia (total cholesterol 240 mg/dL, low-density lipoprotein LDL- DOI:10.18240/ijo.2018.03.28 cholesterol 170 mg/dL, triglycerides 330 mg/dL) and idiopathic arterial hypertension (blood pressure of 145/95 mm Hg). The patient Citation: Kotoula M, Papageorgiou E, Xanthou F, Kalampalikis S, was further investigated for autoimmune, thrombophilic, and Androudi S, Tsironi EE. Choroidal vascular occlusion in a young male hyperviscosity disorders. Auto-antibody levels were within patient with sickle cell trait. Int J Ophthalmol 2018;11(3):528-532 normal limits. Laboratory evaluation including a complete blood count, peripheral blood smear, serum electrolytes and Dear Editor, serum viscosity did not reveal abnormal findings. Additionally, [1] horoidal vascular occlusion is a rare finding . Choroidal a thrombophilia work-up including blood count, type and perfusion disorders may range from focal infarction of C screen, total protein, albumin, antithrombin, prothrombin time, the choriocapillaris to fibrinoid arteriolar necrosis[2].
    [Show full text]
  • Acute Visual Loss
    425 Acute Visual Loss ShirleyH.Wray,MD,PhD,FRCP1 1 Department of Neurology, Massachusetts General Hospital, Boston, Address for correspondence ShirleyH.Wray,MD,PhD,FRCP, Massachusetts Department of Neurology, Massachusetts General Hospital, 55 Fruit St, Boston 02114, MA (e-mail: [email protected]). Semin Neurol 2016;36:425–432. Abstract Acute visual loss is a frightening experience, a common ophthalmic emergency, and a diagnostic challenge. In this review, the author focusses on the diagnosis of transient Keywords monocular blindness and visual loss due to infarction of the retina and/or the optic nerve ► ocular stroke —the ocular parallel of cerebral stroke. Illustrative Case the left supraclinoid internal carotid artery (ICA) just proximal to the origin of the left posterior communicating artery. Day 1: The patient is a 75-year-old ophthalmologist who Day 22: The patient consulted a neurovascular surgeon experienced an acute transient “white out” of her vision in who obtained a head and neck computed tomographic her left eye lasting for 20 minutes. She had no accompanying angiogram that showed that the ICA aneurysm was symptoms. At this time, the patient was concerned and unchanged in size and morphology from the previous anxious that the white out of vision was an attack of transient exam. No other aneurysm was seen. The surgeon reviewed monocular blindness—a transient ischemic attack that can all the imaging studies with the patient and reassured her herald stroke. that there was minimal risk of rupture of the aneurysm. Day 4: She asked her ophthalmology fellow to examine her eye including intraocular pressure, dilated funduscopy, and Special Explanatory Note automated (Humphrey) visual fields.
    [Show full text]
  • Frosted Branch Angiitis
    FROSTED BRANCH ANGIITIS Elisabetta Miserocchi, M.D. Frosted branch angiitis was originally described in the Japanese literature by Ito in 1976 in a six- year-old child presenting with severe sheathing of all retinal vessels producing the appearance of frosted branchs of a tree. This entity is an acute panuveitis with severe vasculitis affecting the whole retina. Since veins are more involved than arteries, it is also called diffuse acute retinal periphlebitis. Epidemiology Frosted branch angiitis is a rare disease, being described in only 58 cases in the literature most from Japan, but also some in North America, Turkey and India. This entity usually affects young patients; in Japan the disease tends to affect children (range: 6- 16 years old) with higher frequency, while in the other countries where this disorder has been described, the affected population is older, ranging from 23 to 29 years old .Slighthly more males have been reported than females (52% versus 48%). This condition is typically bilateral, but unilateral cases (28%) have been reported. Classification Frosted branch angiitis can be an idiopathic disorder or can be associated with ocular and systemic diseases. Cytomegalovirus retinitis (CMV), AIDS retinitis and Toxoplasmic chorioretinitis are the most frequent ocular associations, while systemic lupus erythematosus, Crohn’s disease, large cell lymphoma and acute lymphoblastic leukemia have been described as systemic disorders associated with frosted branch angiitis. The increasing use of the term frosted branch angiitis in the ophthalmic literature raises questions about what this disorder is and when the term should be used to describe a distinct clinical syndrome or merely a clinical sign that is being recognized in an increasing number of inflammatory conditions.
    [Show full text]
  • Acute Visual Loss
    Acute Visual Loss OBJECTIVES: - DONE BY: Samar AlQhtani, Yara Aldigi, Ghada Alhadlaq. REVISED BY: Deena AlNouwaiser, Shrooq Alsomali REFERENCES: lecture, 436 teamwork, Lecture note book. Editing file Color index: Important | Notes | Book | Extra Special thanks to 436 (A) teamwork. Acute visual loss ● What is acute visual loss (AVL)? Sudden onset of blindness or significant visual impairment. Loss of vision is usually considered acute if it develops within a few minutes to a couple of days. A disaster for most people and you should be able to evaluate such a patient and be able to recognize situations requiring urgent action. It may affect one or both eyes, all or part of visual field, or it may arise from a pathology in any part of the visual pathway. • Etiology: Acute visual loss (AVL) can be classified by: ▪ Presence of pain. ▪ Structure affected. AVL classified by PAIN Painful Painless Acute Angle Closure Glaucoma: can be Vitreous Hemorrhage: acute or chronic (and becomes open - It can be painful if it is traumatic. angle). Retinal Detachment: - in the past, they misdiagnosed it with - It could be caused by trauma or w/o MI due to pain severity, they trauma. presented with severe headache, - The patient may have it and not drop of vision, severe eye pain, discover it until covering one eye. nausea and vomiting. Retinal vascular occlusions: Uveitis: - arteries/veins. - It may be slow or sudden and acute. Optic neuritis: - Patient is always in pain. - It happens in cases with MS could Keratitis: present with pain or without. - Infection (microbial keratitis) or - Sometimes eye movement may cause inflammation of cornea.
    [Show full text]
  • Corneal Ectasia Following Laser in Situ Keratomileusis for Myopia
    CASE REPORTS AND SMALL CASE SERIES high myopia resulting from poste- results might be related to the pre- Photorefractive Keratectomy rior lenticonus. Postsurgical refrac- existing corneal stromal abnormali- for Correction of tion was stable for 8 years, then a ties in their patients, which were not Epikeratophakia Regression rapid myopic regression of the epi- observed in our group. Thus, PRK keratophakic lenses was observed can effectively be used to treat epi- Excimer laser photorefractive kera- the following year (Table). In- keratophakic regressed lenses in a se- tectomy (PRK) is widely used for the stead of removing the failed epikera- lected group of patients in whom correction of myopia, astigmatism, tophakic lenses, we performed PRK both the epikeratograft and the sur- and hyperopia.1,2 It has also been on the eyes. rounding cornea are clear. This used for correction of astigmatism method eliminates the need for re- after penetrating keratoplasty.3 Results. Two and a half years after moval of the epikeratograft and ex- Epikeratophakia has been used PRK, the refraction in all 4 eyes is posing the patient to the risks of suc- in the treatment of nontolerant con- stable and the epigrafts are clear. The cessive penetrating keratoplasty. tact lens keratoconous patients.4,5 Table presents the refraction and vi- The epigrafts were made from ma- sual acuity results for the eyes be- Hirsh Ami, MD chined corneal tissue that was found fore PRK and at 3 months, 1 year, Solberg Yoram, MD, PhD unsuitable for penetrating kerato- and 21⁄2 years after PRK. No haze has Cahana Michael, MD plasty.
    [Show full text]