Chapter 9 PRECONDITIONING
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structured Eigenvalue Condition Numbers and Linearizations for Matrix Polynomials
¢¢¢¢¢¢¢¢¢¢¢ ¢¢¢¢¢¢¢¢¢¢¢ ¢¢¢¢¢¢¢¢¢¢¢ ¢¢¢¢¢¢¢¢¢¢¢ Eidgen¨ossische Ecole polytechnique f´ed´erale de Zurich ¢¢¢¢¢¢¢¢¢¢¢ ¢¢¢¢¢¢¢¢¢¢¢ ¢¢¢¢¢¢¢¢¢¢¢ ¢¢¢¢¢¢¢¢¢¢¢ Technische Hochschule Politecnico federale di Zurigo ¢¢¢¢¢¢¢¢¢¢¢ ¢¢¢¢¢¢¢¢¢¢¢ ¢¢¢¢¢¢¢¢¢¢¢ ¢¢¢¢¢¢¢¢¢¢¢ Zu¨rich Swiss Federal Institute of Technology Zurich Structured eigenvalue condition numbers and linearizations for matrix polynomials B. Adhikari∗, R. Alam† and D. Kressner Research Report No. 2009-01 January 2009 Seminar fu¨r Angewandte Mathematik Eidgen¨ossische Technische Hochschule CH-8092 Zu¨rich Switzerland ∗Department of Mathematics, Indian Institute of Technology Guwahati, India, E-mail: [email protected] †Department of Mathematics, Indian Institute of Technology Guwahati, India, E-mail: rafi[email protected], rafi[email protected], Fax: +91-361-2690762/2582649. Structured eigenvalue condition numbers and linearizations for matrix polynomials Bibhas Adhikari∗ Rafikul Alam† Daniel Kressner‡. Abstract. This work is concerned with eigenvalue problems for structured matrix polynomials, including complex symmetric, Hermitian, even, odd, palindromic, and anti-palindromic matrix poly- nomials. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Recently, linearizations have been classified for which the pencil reflects the structure of the original polynomial. A question of practical impor- tance is whether this process of linearization increases the sensitivity of the eigenvalue with respect to structured perturbations. For all structures under consideration, we show that this is not the case: there is always a linearization for which the structured condition number of an eigenvalue does not differ significantly. This implies, for example, that a structure-preserving algorithm applied to the linearization fully benefits from a potentially low structured eigenvalue condition number of the original matrix polynomial. Keywords. Eigenvalue problem, matrix polynomial, linearization, structured condition num- ber. -
Condition Number Bounds for Problems with Integer Coefficients*
Condition Number Bounds for Problems with Integer Coefficients* Gregorio Malajovich Departamento de Matem´atica Aplicada, Universidade Federal do Rio de Janeiro. Caixa Postal 68530, CEP 21945-970, Rio de Janeiro, RJ, Brasil. E-mail: [email protected] An explicit a priori bound for the condition number associated to each of the following problems is given: general linear equation solving, least squares, non-symmetric eigenvalue problems, solving univariate polynomials, and solv- ing systems of multivariate polynomials. It is assumed that the input has integer coefficients and is not on the degeneracy locus of the respective prob- lem (i.e., the condition number is finite). Our bounds are stated in terms of the dimension and of the bit-size of the input. In the same setting, bounds are given for the speed of convergence of the following iterative algorithms: QR iteration without shift for the symmetric eigenvalue problem, and Graeffe iteration for univariate polynomials. Key Words: condition number, height, complexity 1. INTRODUCTION In most of the numerical analysis literature, complexity and stability of numerical algorithms are usually estimated in terms of the problem instance dimension and of a \condition number". For instance, the complexity of solving an n n linear system Ax = b is usually estimated in terms of the dimension n×(when the input actually consists of n(n + 1) real numbers) and the condition number κ(A) (see section 2.1 for the definition of the condition number). There is a set of problems instances with κ(A) = , and in most cases it makes no sense to solve these instances. -
Overview of Iterative Linear System Solver Packages
Overview of Iterative Linear System Solver Packages Victor Eijkhout July, 1998 Abstract Description and comparison of several packages for the iterative solu- tion of linear systems of equations. 1 1 Intro duction There are several freely available packages for the iterative solution of linear systems of equations, typically derived from partial di erential equation prob- lems. In this rep ort I will give a brief description of a numberofpackages, and giveaninventory of their features and de ning characteristics. The most imp ortant features of the packages are which iterative metho ds and preconditioners supply; the most relevant de ning characteristics are the interface they present to the user's data structures, and their implementation language. 2 2 Discussion Iterative metho ds are sub ject to several design decisions that a ect ease of use of the software and the resulting p erformance. In this section I will give a global discussion of the issues involved, and how certain p oints are addressed in the packages under review. 2.1 Preconditioners A go o d preconditioner is necessary for the convergence of iterative metho ds as the problem to b e solved b ecomes more dicult. Go o d preconditioners are hard to design, and this esp ecially holds true in the case of parallel pro cessing. Here is a short inventory of the various kinds of preconditioners found in the packages reviewed. 2.1.1 Ab out incomplete factorisation preconditioners Incomplete factorisations are among the most successful preconditioners devel- op ed for single-pro cessor computers. Unfortunately, since they are implicit in nature, they cannot immediately b e used on parallel architectures. -
A Geometric Theory for Preconditioned Inverse Iteration. III: a Short and Sharp Convergence Estimate for Generalized Eigenvalue Problems
A geometric theory for preconditioned inverse iteration. III: A short and sharp convergence estimate for generalized eigenvalue problems. Andrew V. Knyazev Department of Mathematics, University of Colorado at Denver, P.O. Box 173364, Campus Box 170, Denver, CO 80217-3364 1 Klaus Neymeyr Mathematisches Institut der Universit¨atT¨ubingen,Auf der Morgenstelle 10, 72076 T¨ubingen,Germany 2 Abstract In two previous papers by Neymeyr: A geometric theory for preconditioned inverse iteration I: Extrema of the Rayleigh quotient, LAA 322: (1-3), 61-85, 2001, and A geometric theory for preconditioned inverse iteration II: Convergence estimates, LAA 322: (1-3), 87-104, 2001, a sharp, but cumbersome, convergence rate estimate was proved for a simple preconditioned eigensolver, which computes the smallest eigenvalue together with the corresponding eigenvector of a symmetric positive def- inite matrix, using a preconditioned gradient minimization of the Rayleigh quotient. In the present paper, we discover and prove a much shorter and more elegant, but still sharp in decisive quantities, convergence rate estimate of the same method that also holds for a generalized symmetric definite eigenvalue problem. The new estimate is simple enough to stimulate a search for a more straightforward proof technique that could be helpful to investigate such practically important method as the locally optimal block preconditioned conjugate gradient eigensolver. We demon- strate practical effectiveness of the latter for a model problem, where it compares favorably with two -
16 Preconditioning
16 Preconditioning The general idea underlying any preconditioning procedure for iterative solvers is to modify the (ill-conditioned) system Ax = b in such a way that we obtain an equivalent system Aˆxˆ = bˆ for which the iterative method converges faster. A standard approach is to use a nonsingular matrix M, and rewrite the system as M −1Ax = M −1b. The preconditioner M needs to be chosen such that the matrix Aˆ = M −1A is better conditioned for the conjugate gradient method, or has better clustered eigenvalues for the GMRES method. 16.1 Preconditioned Conjugate Gradients We mentioned earlier that the number of iterations required for the conjugate gradient algorithm to converge is proportional to pκ(A). Thus, for poorly conditioned matrices, convergence will be very slow. Thus, clearly we will want to choose M such that κ(Aˆ) < κ(A). This should result in faster convergence. How do we find Aˆ, xˆ, and bˆ? In order to ensure symmetry and positive definiteness of Aˆ we let M −1 = LLT (44) with a nonsingular m × m matrix L. Then we can rewrite Ax = b ⇐⇒ M −1Ax = M −1b ⇐⇒ LT Ax = LT b ⇐⇒ LT AL L−1x = LT b . | {z } | {z } |{z} =Aˆ =xˆ =bˆ The symmetric positive definite matrix M is called splitting matrix or preconditioner, and it can easily be verified that Aˆ is symmetric positive definite, also. One could now formally write down the standard CG algorithm with the new “hat- ted” quantities. However, the algorithm is more efficient if the preconditioning is incorporated directly into the iteration. To see what this means we need to examine every single line in the CG algorithm. -
The Eigenvalue Problem: Perturbation Theory
Jim Lambers MAT 610 Summer Session 2009-10 Lecture 13 Notes These notes correspond to Sections 7.2 and 8.1 in the text. The Eigenvalue Problem: Perturbation Theory The Unsymmetric Eigenvalue Problem Just as the problem of solving a system of linear equations Ax = b can be sensitive to pertur- bations in the data, the problem of computing the eigenvalues of a matrix can also be sensitive to perturbations in the matrix. We will now obtain some results concerning the extent of this sensitivity. Suppose that A is obtained by perturbing a diagonal matrix D by a matrix F whose diagonal entries are zero; that is, A = D + F . If is an eigenvalue of A with corresponding eigenvector x, then we have (D − I)x + F x = 0: If is not equal to any of the diagonal entries of A, then D − I is nonsingular and we have x = −(D − I)−1F x: Taking 1-norms of both sides, we obtain −1 −1 kxk1 = k(D − I) F xk1 ≤ k(D − I) F k1kxk1; which yields n −1 X jfijj k(D − I) F k1 = max ≥ 1: 1≤i≤n jdii − j j=1;j6=i It follows that for some i, 1 ≤ i ≤ n, satisfies n X jdii − j ≤ jfijj: j=1;j6=i That is, lies within one of the Gerschgorin circles in the complex plane, that has center aii and radius n X ri = jaijj: j=1;j6=i 1 This is result is known as the Gerschgorin Circle Theorem. Example The eigenvalues of the matrix 2 −5 −1 1 3 A = 4 −2 2 −1 5 1 −3 7 are (A) = f6:4971; 2:7930; −5:2902g: The Gerschgorin disks are D1 = fz 2 C j jz − 7j ≤ 4g;D2 = fz 2 C j jz − 2j ≤ 3g;D3 = fz 2 C j jz + 5j ≤ 2g: We see that each disk contains one eigenvalue. -
Numerical Linear Algebra Solving Ax = B , an Overview Introduction
Solving Ax = b, an overview Numerical Linear Algebra ∗ A = A no Good precond. yes flex. precond. yes GCR Improving iterative solvers: ⇒ ⇒ ⇒ yes no no ⇓ ⇓ ⇓ preconditioning, deflation, numerical yes GMRES A > 0 CG software and parallelisation ⇒ ⇓ no ⇓ ⇓ ill cond. yes SYMMLQ str indef no large im eig no Bi-CGSTAB ⇒ ⇒ ⇒ no yes yes ⇓ ⇓ ⇓ MINRES IDR no large im eig BiCGstab(ℓ) ⇐ yes Gerard Sleijpen and Martin van Gijzen a good precond itioner is available ⇓ the precond itioner is flex ible IDRstab November 29, 2017 A + A∗ is strongly indefinite A 1 has large imaginary eigenvalues November 29, 2017 2 National Master Course National Master Course Delft University of Technology Introduction Program We already saw that the performance of iterative methods can Preconditioning be improved by applying a preconditioner. Preconditioners (and • Diagonal scaling, Gauss-Seidel, SOR and SSOR deflation techniques) are a key to successful iterative methods. • Incomplete Choleski and Incomplete LU In general they are very problem dependent. • Deflation Today we will discuss some standard preconditioners and we will • Numerical software explain the idea behind deflation. • Parallelisation We will also discuss some efforts to standardise numerical • software. Shared memory versus distributed memory • Domain decomposition Finally we will discuss how to perform scientific computations on • a parallel computer. November 29, 2017 3 November 29, 2017 4 National Master Course National Master Course Preconditioning Why preconditioners? A preconditioned iterative solver solves the system − − M 1Ax = M 1b. 1 The matrix M is called the preconditioner. 0.8 The preconditioner should satisfy certain requirements: 0.6 Convergence should be (much) faster (in time) for the 0.4 • preconditioned system than for the original system. -
Inverse Littlewood-Offord Theorems and the Condition Number Of
Annals of Mathematics, 169 (2009), 595{632 Inverse Littlewood-Offord theorems and the condition number of random discrete matrices By Terence Tao and Van H. Vu* Abstract Consider a random sum η1v1 + ··· + ηnvn, where η1; : : : ; ηn are indepen- dently and identically distributed (i.i.d.) random signs and v1; : : : ; vn are inte- gers. The Littlewood-Offord problem asks to maximize concentration probabil- ities such as P(η1v1+···+ηnvn = 0) subject to various hypotheses on v1; : : : ; vn. In this paper we develop an inverse Littlewood-Offord theory (somewhat in the spirit of Freiman's inverse theory in additive combinatorics), which starts with the hypothesis that a concentration probability is large, and concludes that almost all of the v1; : : : ; vn are efficiently contained in a generalized arithmetic progression. As an application we give a new bound on the magnitude of the least singular value of a random Bernoulli matrix, which in turn provides upper tail estimates on the condition number. 1. Introduction Let v be a multiset (allowing repetitions) of n integers v1; : : : ; vn. Consider a class of discrete random walks Yµ,v on the integers Z, which start at the origin and consist of n steps, where at the ith step one moves backwards or forwards with magnitude vi and probability µ/2, and stays at rest with probability 1−µ. More precisely: Definition 1.1 (Random walks). For any 0 ≤ µ ≤ 1, let ηµ 2 {−1; 0; 1g denote a random variable which equals 0 with probability 1 − µ and ±1 with probability µ/2 each. In particular, η1 is a random sign ±1, while η0 is iden- tically zero. -
Computing the Jordan Structure of an Eigenvalue∗
SIAM J. MATRIX ANAL.APPL. c 2017 Society for Industrial and Applied Mathematics Vol. 38, No. 3, pp. 949{966 COMPUTING THE JORDAN STRUCTURE OF AN EIGENVALUE∗ NICOLA MASTRONARDIy AND PAUL VAN DOORENz Abstract. In this paper we revisit the problem of finding an orthogonal similarity transformation that puts an n × n matrix A in a block upper-triangular form that reveals its Jordan structure at a particular eigenvalue λ0. The obtained form in fact reveals the dimensions of the null spaces of i (A − λ0I) at that eigenvalue via the sizes of the leading diagonal blocks, and from this the Jordan structure at λ0 is then easily recovered. The method starts from a Hessenberg form that already reveals several properties of the Jordan structure of A. It then updates the Hessenberg form in an efficient way to transform it to a block-triangular form in O(mn2) floating point operations, where m is the total multiplicity of the eigenvalue. The method only uses orthogonal transformations and is backward stable. We illustrate the method with a number of numerical examples. Key words. Jordan structure, staircase form, Hessenberg form AMS subject classifications. 65F15, 65F25 DOI. 10.1137/16M1083098 1. Introduction. Finding the eigenvalues and their corresponding Jordan struc- ture of a matrix A is one of the most studied problems in numerical linear algebra. This structure plays an important role in the solution of explicit differential equations, which can be modeled as n×n (1.1) λx(t) = Ax(t); x(0) = x0;A 2 R ; where λ stands for the differential operator. -
Preconditioned Inverse Iteration and Shift-Invert Arnoldi Method
Preconditioned inverse iteration and shift-invert Arnoldi method Melina Freitag Department of Mathematical Sciences University of Bath CSC Seminar Max-Planck-Institute for Dynamics of Complex Technical Systems Magdeburg 3rd May 2011 joint work with Alastair Spence (Bath) 1 Introduction 2 Inexact inverse iteration 3 Inexact Shift-invert Arnoldi method 4 Inexact Shift-invert Arnoldi method with implicit restarts 5 Conclusions Outline 1 Introduction 2 Inexact inverse iteration 3 Inexact Shift-invert Arnoldi method 4 Inexact Shift-invert Arnoldi method with implicit restarts 5 Conclusions Problem and iterative methods Find a small number of eigenvalues and eigenvectors of: Ax = λx, λ ∈ C,x ∈ Cn A is large, sparse, nonsymmetric Problem and iterative methods Find a small number of eigenvalues and eigenvectors of: Ax = λx, λ ∈ C,x ∈ Cn A is large, sparse, nonsymmetric Iterative solves Power method Simultaneous iteration Arnoldi method Jacobi-Davidson method repeated application of the matrix A to a vector Generally convergence to largest/outlying eigenvector Problem and iterative methods Find a small number of eigenvalues and eigenvectors of: Ax = λx, λ ∈ C,x ∈ Cn A is large, sparse, nonsymmetric Iterative solves Power method Simultaneous iteration Arnoldi method Jacobi-Davidson method The first three of these involve repeated application of the matrix A to a vector Generally convergence to largest/outlying eigenvector Shift-invert strategy Wish to find a few eigenvalues close to a shift σ σ λλ λ λ λ 3 1 2 4 n Shift-invert strategy Wish to find a few eigenvalues close to a shift σ σ λλ λ λ λ 3 1 2 4 n Problem becomes − 1 (A − σI) 1x = x λ − σ each step of the iterative method involves repeated application of A =(A − σI)−1 to a vector Inner iterative solve: (A − σI)y = x using Krylov method for linear systems. -
Preconditioning the Coarse Problem of BDDC Methods—Three-Level, Algebraic Multigrid, and Vertex-Based Preconditioners
Electronic Transactions on Numerical Analysis. Volume 51, pp. 432–450, 2019. ETNA Kent State University and Copyright c 2019, Kent State University. Johann Radon Institute (RICAM) ISSN 1068–9613. DOI: 10.1553/etna_vol51s432 PRECONDITIONING THE COARSE PROBLEM OF BDDC METHODS— THREE-LEVEL, ALGEBRAIC MULTIGRID, AND VERTEX-BASED PRECONDITIONERS∗ AXEL KLAWONNyz, MARTIN LANSERyz, OLIVER RHEINBACHx, AND JANINE WEBERy Abstract. A comparison of three Balancing Domain Decomposition by Constraints (BDDC) methods with an approximate coarse space solver using the same software building blocks is attempted for the first time. The comparison is made for a BDDC method with an algebraic multigrid preconditioner for the coarse problem, a three-level BDDC method, and a BDDC method with a vertex-based coarse preconditioner. It is new that all methods are presented and discussed in a common framework. Condition number bounds are provided for all approaches. All methods are implemented in a common highly parallel scalable BDDC software package based on PETSc to allow for a simple and meaningful comparison. Numerical results showing the parallel scalability are presented for the equations of linear elasticity. For the first time, this includes parallel scalability tests for a vertex-based approximate BDDC method. Key words. approximate BDDC, three-level BDDC, multilevel BDDC, vertex-based BDDC AMS subject classifications. 68W10, 65N22, 65N55, 65F08, 65F10, 65Y05 1. Introduction. During the last decade, approximate variants of the BDDC (Balanc- ing Domain Decomposition by Constraints) and FETI-DP (Finite Element Tearing and Interconnecting-Dual-Primal) methods have become popular for the solution of various linear and nonlinear partial differential equations [1,8,9, 12, 14, 15, 17, 19, 21, 24, 25]. -
The Preconditioned Conjugate Gradient Method with Incomplete Factorization Preconditioners
Computers Math. Applic. Vol. 31, No. 4/5, pp. 1-5, 1996 Pergamon Copyright©1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0898-1221/96 $15.00 4- 0.00 0898-1221 (95)00210-3 The Preconditioned Conjugate Gradient Method with Incomplete Factorization Preconditioners I. ARANY University of Miskolc, Institute of Mathematics 3515 Miskolc-Egyetemv~iros, Hungary mat arany©gold, uni-miskolc, hu Abstract--We present a modification of the ILUT algorithm due to Y. Sand for preparing in- complete factorization preconditioner for positive definite matrices being neither diagonally dominant nor M-matrices. In all tested cases, the rate of convergence of the relevant preconditioned conjugate gradient method was at a sufficient level, when linear systems arising from static problem for bar structures with 3D beam elements were solved. Keywords--Preconditioned conjugate gradient method, Incomplete factorization. 1. INTRODUCTION For solving large sparse positive definite systems of linear equations, the conjugate gradient method combined with a preconditoning technique seems to be one of the most efficient ways among the simple iterative methods. As known, for positive definite symmetric diagonally dom- inant M-matrices, the incomplete factorization technique may be efficiently used for preparing preconditioners [1]. However, for more general cases, when the matrix is neither diagonally domi- nant nor M-matrix, but it is a positive definite one, some incomplete factorization techniques [2,3] seem to be quite unusable, since usually, during the process, a diagonal element is turning to zero. We present a modification to the ILUT algorithm of Sand [2] for preparing preconditioners for the above mentioned matrices.