Weekly Wireless Report WEEK ENDING November 21, 2014

Total Page:16

File Type:pdf, Size:1020Kb

Weekly Wireless Report WEEK ENDING November 21, 2014 Weekly Wireless Report WEEK ENDING November 21, 2014 INSIDE THIS ISSUE: This Week’s Stories Data Caps Don’t Work: Thoughts For The Future Of Cellular THIS WEEK’S STORIES Network Congestion Data Caps Don’t Work: November 20, 2014 Thoughts For The Future Of Cellular Network Congestion We are reading, posting, watching, and streaming more than ever before, but cellular network data has not kept pace—in fact, it’s gone backwards (as those 44 percent of AT&T customers clinging to their Firefox Drops Google For grandfathered unlimited plans can readily attest to). While our need for and use of cellular network data Yahoo Search has continued to increase, carriers have opted to manage usage and congestion through data caps, which can take a variety of forms depending on carrier. For the most part, data caps as they stand now PRODUCTS & SERVICES are not about alleviating network congestion as carriers claim; they’re about profit. Carriers know this, consumers know this...heck even the head of the FCC knows this, judging from FCC Chairman Tom This App Can Tell Which Brew Wheeler’s July 2014 letter to Verizon CEO Dan Mead: “It is disturbing to me that Verizon Wireless Is Right For You would base its ‘network management’ on distinctions among its customers’ data plans, rather than on network architecture or technology.” Snapchat Teams Up With Square To Offer Money-Transfer Feature Yes, in some cases data caps can help prevent the most excessive overuse of a limited resource, such as the top 1 percent of mobile data subscribers that generate 10 percent of mobile data traffic. Network EMERGING TECHNOLOGY congestion itself is very real, and with estimates forecasting 15.9 exabytes per month of global data traffic in 2018 (that’s 20 billion GB a month aka over 7,700 GB being used every second for those Dropbox Carousel Comes To playing along at home), it’s an issue that’s only going to grow more and more important. This alone is iPad And Web Today, Android why crude approaches to network management like data caps need to change, and quickly. How we Tablets Soon use, how we view, and how we’re delivered data are all rapidly changing - monitoring and measurement need to advance at the same pace. IBM Verse: Can It Trump Google Inbox? In the wake of Sprint's "double the high-speed data" promotion (and the subsequent responses of AT&T MERGERS & ACQUISITIONS doubling their data, Verizon doubling their data, and Sprint doubling its data again), traditional views on the price of cellular data and the need for data caps are shifting. “Data” in the abstract seems more arbitrary than ever. If data caps were about managing congestion, how were they all able to increase at Former BlackBerry CEO Heins once? Did the network capacity magically double overnight? Named Chairman Of Startup Powermat Leading rhetorical questions aside, it’s clear data caps for congestion are the wrong tool for the job, but INDUSTRY REPORTS what’s interesting is that carriers don’t even have the right tools to begin with. In the ideal scenario, network traffic evaluation would be done in real time at the individual cell sites and only slow down Sprint Makes Dramatic Jump users who were hogging bandwidth at that exact moment. But that is not how carriers handle it. In LTE Coverage In Q3, With T-Mobile Not Far Behind Verizon, AT&T, T-Mobile, and Sprint claim they only throttle the top 3-5 percent of users (as measured Will Apple Soon Be Worth $1 by monthly data consumption), and once you’ve gone over your monthly cap you’re at risk of being Trillion? throttled if you enter a congested area. While this strategy is great for profits, it’s a fundamentally broken way to properly handle a network. A cellular network doesn’t care about past usage patterns of customers or how much data they’ve already used that month, it cares about how many people are trying to access how much data from it right now. Even the carriers’ seldom used but seemingly more technical approaches of peak time management, concurrent user thresholds, and bandwidth thresholds aren’t up to the task of properly handling network congestion. The underlying problem in all three approaches is that they attempt to handle congestion through educated guesses based on network proxies rather than actually monitoring the network itself. Peak time management uses time of day guesses; concurrent users bases it on number of people on the network, not how much they’re actually using; and bandwidth thresholds operate under the misguided assumption that link/resource capacity has a fixed maximum, which results in guesses for congestion threshold levels (e.g. “apply management when traffic on this link exceeds 72 Mbps”) rather than Connect with Us www.ksrinc.com P a g e | 2 dynamically adjusting to its capacity in that moment (e.g. “apply management when this link exceeds 90 percent of its current capacity”). The main problem with proper and effective cellular network congestion management is not awareness—carriers understand these methods aren’t the best tools for the job—it’s capability. Legacy solutions were either prohibitively expensive, time-consuming, or didn’t work at scale, and as such carriers used the cheaper and easier methods outlined above. And to a degree, those techniques worked back when there was less cellular network traffic and consumers didn’t know what to expect from carriers, but the volume of data and our demands on the network are changing. It’s time the solutions for managing that data did as well. Fortunately, monitoring technology has not stood still and today's cutting-edge solutions are better placed to support a more rational approach to congestion management. The key need is for granular monitoring of dynamic demand patterns from users, and of congestion conditions within the network itself. These requirements couldn't be met in the days when operators had to rely on coarse-grained observations of total traffic load. But today's technology enables real-time monitoring of data usage on a per-user basis, at timescales down to seconds or below. Solutions are also available for the problem of accurate real-time congestion measurement, for example by tracking user data as it moves across and between networks, and detecting any long transit times or inadvertent drops due to overloaded bottlenecks. Monitoring systems can even detect particular patterns of usage that are more likely to contribute to congestion than others – a bit like spotting slow 'platoons' of cars on the freeway that hold up other drivers. When you put these techniques together it's clear they give operators more than sufficient visibility to dynamically detect congestion conditions, and react intelligently in a manner that correctly accounts for actual user activity. The days when lack of monitoring capability could be offered as an excuse for clumsy congestion management are drawing to a close. While cellular network congestion can currently be semi-contained with the sledgehammer approach of data caps, the amount of people in the world with connected devices will only continue to grow (to the tune of 500 million more smartphones sold globally in 2018 than now) and with it the need for more refined methods of network monitoring. When the amount of drivers on the road increased, we didn’t say that after driving 100 miles per month you’re capped at school zone speeds or must pay 3x the normal price for gas. Instead, we adjusted our transportation infrastructure, we incorporated technology like live updating and dynamically priced toll roads, and we worked towards more opportunities and innovation in public transit. It’s time for us to take a similar approach with network congestion. The solution of tomorrow needs to be able to really and truly monitor network congestion (rather than using byproducts of congestion as proxies or estimates based on past data) and, more importantly, it needs to be able to do this in real time. wirelessweek.com Firefox Drops Google For Yahoo Search November 20, 2014 Mozilla takes up with new Firefox search partners that it believes are better aligned with its values of “Mozilla has bitten the hand choice and independence. that fed it. After a 10-year Mozilla has bitten the hand that fed it. After a 10-year partnership, Google Search next year will no partnership, Google Search longer be the default search engine in Mozilla's Firefox browser. next year will no longer be the default search engine in Mozilla, which develops open-source software for the benefit of the public, has struck a five-year deal Mozilla's Firefox browser.” with Yahoo to make Yahoo Search the default search engine in Firefox. The deal, for an undisclosed sum, comes as Mozilla's three-year deal with Google is about to expire. That arrangement, which made Google the default search engine in Firefox globally, is said to have been worth $300 million annually. Mozilla's deal with Yahoo, however, covers only Firefox in the US. Connect with Us www.ksrinc.com P a g e | 3 Mozilla CEO Chris Beard said the company is ending its practice of having a single global default search provider. "Our new search strategy doubles down on our commitment to make Firefox a browser for everyone," said Beard in a blog post. "We believe it will empower more people, in more places with more choice and opportunity to innovate and ultimately put even more people in control over their lives online." Mozilla's declaration of independence comes six years after Google began competing with Firefox through its Chrome browser, which this year displaced Firefox as the second most popular desktop browser globally, according to NetApplications.
Recommended publications
  • Wireless Power Transmission
    Lecture 8: Supply Systems- Wireless Power Transmission 8.1 Introduction Wireless power transfer (WPT), wireless power transmission, wireless energy transmission (WET), or electromagnetic power transfer is the transmission of electrical energy without wires as a physical link. In a wireless power transmission system, a transmitter device, driven by electric power from a power source, generates a time-varying electromagnetic field, which transmits power across space to a receiver device, which extracts power from the field and supplies it to an electrical load. Wireless power transfer is useful to power electrical devices where interconnecting wires are inconvenient, hazardous, or are not possible. Figure 8.1 Generic block diagram of a wireless power system. Wireless power techniques mainly fall into two categories, Near field and Far-field. 8.2 Near field Transfer In near field or non-radiative techniques, power is transferred over short distances by magnetic fields using inductive coupling between coils of wire, or by electric fields using capacitive coupling between metal electrodes. Inductive coupling is the most widely used wireless technology; its applications include charging handheld devices like phones and electric toothbrushes, RFID tags, and wirelessly charging or continuous wireless power transfer in implantable medical devices like artificial cardiac pacemakers, or electric vehicles. 1 In fact a transformer is transferring energy wirelessly through magnetic field coupling, although it was invented more than 100 years ago. But if you remove the iron core and move the two coils apart, the transfer efficiency drops drastically. That is why the two coils must be put close enough to each other. However, if the transmitter and receiver coils have the same resonant frequency, which is determined by the material and shape of the coil, transfer efficiency will decrease much more slowly when they are moved apart.
    [Show full text]
  • Magnetic MIMO: How to Charge Your Phone in Your Pocket
    Magnetic MIMO: How To Charge Your Phone in Your Pocket Jouya Jadidian Dina Katabi Massachusetts Institute of Technology {jouya, dk}@mit.edu ABSTRACT and can charge a phone independently of its orientation. One could This paper bridges wireless communication with wireless power then attach a charging pad below the desk and use it to charge the transfer. It shows that mobile phones can be charged remotely, while user’s phone whenever she is sitting at her desk. With such a setup, in the user’s pocket by applying the concept of MIMO beamform- many of us would hardly ever need to take a phone out of our pocket ing. However, unlike MIMO beamforming in communication sys- to charge it. Achieving this vision however is not easy given the di- tems which targets the radiated field, we transfer power by beam- rectionality and fast drop in the magnetic field. forming the non-radiated magnetic field and steering it toward the This paper delivers a system that can charge a cell phone at dis- phone. We design MagMIMO, a new system for wireless charging tances of about 40 cm, and works independently of how the phone is of cell phones and portable devices. MagMIMO consumes as much oriented in the user’s pocket. Our approach builds on analogous de- power as existing solutions, yet it can charge a phone remotely with- signs common for wireless data communications. Wireless commu- out being removed from the user’s pocket. Furthermore, the phone nications use multi-antenna beamforming to concentrate the energy need not face the charging pad, and can charge independently of its of a signal in a particular direction in space.
    [Show full text]
  • The Global Wireless Charging Market Size Is Expected to Reach $25.6 Billion by 2026, Rising at a Market Growth of 28.4% CAGR During the Forecast Period
    Source: ReportLinker May 15, 2020 11:58 ET The Global Wireless Charging Market size is expected to reach $25.6 billion by 2026, rising at a market growth of 28.4% CAGR during the forecast period Wireless charging is a system which is efficient, easy and safe for powering and charging electrical devices. In fact, by reducing the use of physical connectors and cables it offers reliable, cost-effective and safer advantages over conventional charging systems. New York, May 15, 2020 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Wireless Charging Market By Technology By End User By Region, Industry Analysis and Forecast, 2020 - 2026" - https://www.reportlinker.com/p05893269/?utm_source=GNW In fact, it ensures a continuous power transfer to ensure that all types of equipment (handheld industrial devices, heavy-duty devices, smartphone, among others) are charged and readily available to use. Most wireless charging devices employ induction type technology consisting of two main induction coils, one at the charging base, which further addresses the output of an alternating current from the base, and the other at the portable device. These coils take the shape of a pad clipped onto the smartphones. It can be in the shape of an integrated charging coil that attaches to the charging socket and together form an electric transformer. It uses the magnetic coupling phenomenon that the transmitter & receiver coil converts to electrical current for the proper functionality of the inductive power transfer, respectively. The absence of universally accepted specifications and the interaction with other electronic devices act as a barrier to consumer development.
    [Show full text]
  • Wireless Charging Market to Reach a Market Size of $25.6 Billion by 2026 - KBV Research
    May 18, 2020 15:46 IST Wireless Charging Market to reach a market size of $25.6 billion by 2026 - KBV Research According to a new report Global Wireless Charging Market, published by KBV research, The Global Wireless Charging Market size is expected to reach $25.6 billion by 2026, rising at a market growth of 28.4% CAGR during the forecast period. Increasing smartphone use is projected to accelerate the growth of the consumer electronics sector of the global market for wireless charging. Additionally, technical advancements in mobile devices such as integrated wireless charging technologies are raising awareness among customers about wireless charging. The segment of inductive technologies contributed the maximum sales to the industry. The market sales are driven by factors such as hassle-free and enclosed connections offered by the inductive charging technology. Radio frequency technology is projected to grow at a higher growth rate over the coming years compared to other technologies. RF charging has more potential than induction, as it has more technological areas. The segment of electronics was the main revenue contributor in 2019 and is projected to grow exponentially during the forecast period. Increasing demand for an effective portable electronic charging device is the prime reason for this growth. The healthcare sector is the among the highest revenue contributor in 2019. Some of the major factors for this increase is the surge in the use of wearable devices such as emergency instruments, defibrillators, exoskeletons, pacemakers and wheelchairs in the healthcare industry. In the regional segment, the North America region is expected to attain a dominant market share.
    [Show full text]
  • Global Technology Leaders Collaborate to Make Wireless Power As Commonplace As Wifi
    January 16, 2014 Global Technology Leaders Collaborate to Make Wireless Power as Commonplace as WiFi Flextronics and Powermat Join Forces to Embed Wireless Power in Electronics of all Kinds SAN JOSE, Calif. and SOMERSET, N.J., Jan. 16, 2014 /PRNewswire/ -- Flextronics (NASDAQ: FLEX) and Powermat Technologies today announced a strategic agreement aimed at bringing state-of-the-art wireless power to electronics of all kinds, and to consumers worldwide. As a pioneer and leader of the fast-growing wireless power industry, Powermat technologies have already been adopted by major global players including AT&T General Motors, Procter & Gamble, and Starbucks. The Power Matters Alliance (PMA) - the world's fastest growing wireless power standard and ecosystem - has also incorporated Powermat's technology as a basis for its own open standard. Flextronics is one of the most respected global providers of end-to-end supply chain solutions for electronics; designing and manufacturing devices used by billions of consumers. Its power supply division, Flextronics Power, is a leader in the mobile charging industry and will fully leverage their expertise in research, development, manufacturing and IP to enable innovative wireless power for smartphones, tablets, wearable electronics, notebooks and other applications. "We have concluded that wireless power is the next big wave in mobility. Starting with smart phones and tablets, this new technology will eventually transform how people charge electronics of all kinds," said Chris Cook, president of Flextronics Power. "We plan to bring our unmatched scale and know how to ensure PMA technology is ramped-up, costed-down, and rolled out in a way that brings excellent value to both customers and end users." The companies plan to rapidly leverage the synergies across their organizations, driving miniaturization, cost-reduction, efficiency and integration into both existing and new product platforms.
    [Show full text]
  • THE FUTURE of CHARGING USB Power Delivery & Wireless Charging
    THE FUTURE OF CHARGING USB Power Delivery & Wireless Charging INTRODUCTION: wireless charging protocols allow smaller devices like smartphones to charge… just by placing them on top (or even adjacent) to a charger. Walk into the average home or office, and you’ll Together, they offer a new world of customer see cables and chargers everywhere. Phones, convenience—and a wide range of potential for televisions, stereos, computers, and other new electronics products. accessories are typically connected to a thicket of connectors. But if you take a closer look at those chargers and cables, many of them aren’t INNOVATIONS 1: USB-PD interchangeable. There are AC wall plugs, USB connectors of a variety of configurations, special Apple Lightning cables, and a host of other In addition to the latest USB 3.1 specification, distinct-looking connectors and ports. All of electronic manufacturers are also introducing these cables and connectors exist for one goal— the USB Type-C connector (or, as it’s better charging your electronics. known, USB-C™). It is quite different from older USB connectors and ports that have been in use since the 1990s. USB-C uses a uniquely When users charge electronics, they transmit shaped connector and port that aren’t backward- power from wall plugs (or alternative sources like compatible with older USB protocols without a external batteries) into the devices themselves. converter. That’s because USB-C was built to Starting roughly in the early 2000s, electronics take advantage of newer and better protocols charging for many smaller devices began to like USB-PD, which delivers rapid charging for a center around several different iterations of the wide range of devices, and takes advantage of USB (Universal Serial Bus) interface.
    [Show full text]
  • A Standard for Wireless Power
    A STANDARD FOR CONTACTLESS ENERGY Lately, the interest in wireless power transmission has considerably increased. However, the range of different technologies used for its realization has led to uncertainly among manufacturers of these devices. This in turn, has delayed the swift, extensive expansion of a wireless charging infrastructure that is indispensable for a market breakthrough in the consumer sector. T E X T: Dr. Stephan Horras F O T O S : RRC Power Solutions www.EuE24.net/PDF/EEK13045930 The use of mobile devices has steadily increased in the past years due to various technological advances. Today, making calls is not one of the primary functions of smart phones. In fact, additional functionalities such as navigation, music players or digital cameras are crucial factors in a consumer’s decision to buy. However, the energy demand of these devices increases with the extended range of functions which, despite the constant advancements in battery technologies, involves more frequent charging. A solution to this problem is the use of wireless power transmission and the creation a widely available charging infrastructure comprised of highly frequented locations, such as for example, car interiors, public institutions and public transportation or cafés. This however implies a manufacturer- independent interoperability between the transmitters and the receivers. In the past few years, the increase in publications and patent applications in the field of wireless power transmission demonstrate the great potential that this topic offers, scientific as well as economic. In 2020, the projected market for mobile devices is 15 billion US dollars of which 5 billion is for the smart phone and cell phone segment [1].
    [Show full text]
  • Brezºi£No Polnjenje (Wireless Charging)
    UNIVERZA NA PRIMORSKEM FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN INFORMACIJSKE TEHNOLOGIJE Zaklju£na naloga Brezºi£no polnjenje (Wireless Charging) Ime in priimek: Timotej Kos tudijski program: Ra£unalni²tvo in informatika Mentor: izr. prof. dr. Peter Koro²ec Koper, avgust 2015 Kos T. Brezºi£no polnjenje. Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 II Klju£na dokumentacijska informacija Ime in PRIIMEK: Timotej KOS Naslov zaklju£ne naloge: Brezºi£no polnjenje Kraj: Koper Leto: 2015 tevilo listov: 58 tevilo slik: 12 tevilo tabel: 1 tevilo referenc: 45 Mentor: izr. prof. dr. Peter Koro²ec Klju£ne besede: Brezºi£no, polnjenje, indukcija, pametne, naprave, Qi Izvle£ek: Zaklju£na naloga predstavlja tehnologijo Brezºi£nega polnjenja (ang. Wireless Char- ging), ki postaja vse popularnej²a v dana²njem svetu pametnih naprav. Naloga se osredoto£a na opis celotne slike polnjenja pametnih naprav s poudarkom na brezºi£ni tehnologiji. Za£etno poglavje je namenjeno zgodovini razvoja in polnjenja baterij, nato pa sledi opis in razlaga delovanja ºi£nega polnjenja. Glavno poglavje je poglavje o brez- ºi£nem polnjenju v katerem so opisani glavni trije standardi, ki so trenutno na trgu in delovanje brezºi£nega polnjenja. Na koncu so predstavljeni ²e prakti£ni primeri upo- rabe brezºi£nega polnjenja. S to nalogo ºelim pribliºati to tehnologijo ljudem, ki ²e ne poznajo brezºi£nega polnjenja in razloºiti delovanje tistim, ki jih tak²na tehnologija zanima bolj podrobno. Kos T. Brezºi£no polnjenje. Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 III Key words documentation Name and SURNAME: Timotej KOS Title of nal project paper: Wireless Charging Place: Koper Year: 2015 Number of pages: 58 Number of gures: 12 Number of tables: 1 Number of references: 45 Mentor: Assoc.
    [Show full text]
  • Wireless Charging Market Sample
    SE 1845 | 2012 WIRELESS CHARGING MARKET (2012-2017) – GLOBAL FORECAST AND ANALYSIS BY TECHNOLOGY (INDUCTIVE, MAGNETIC RESONANCE, RADIO FREQUENCY (RF), MICROWAVE, OPTICAL BEAM), PRODUCTS (PADS AND RECEIVERS FOR SMARTPHONES), APPLICATIONS (SMARTPHONES, INDUSTRIAL, MEDICAL, MILITARY, ELECTRIC VEHICLES) R e p o r t D e s c r i p t i o n E x e c u t i v e S u m m a r y T a b l e o f C o n t e n t s L i s t o f T a b l e s S a m p l e T a b l e s R e q u e s t S a m p l e / B u y R e p o r t R e l a t e d R e p o r t s A b o u t M a r k e t s a n d M a r k e t s MarketsandMarkets 7557 Rambler Road, Suite 727, Dallas, Texas 75231 Tel. No.: 1-888-600-6441 Email: [email protected] Wireless Charging Market (2012-2017) – Global Forecast and Analysis By Technology (Inductive, Magnetic Resonance, Radio Frequency (RF), Microwave, Optical Beam), Products SE 1845 | 2012 (Pads and Receivers for Smartphones), Applications (Smartphones, Industrial, Medical, Military, Electric Vehicles) Report Description Key Take-Aways • Impact analysis of the wireless charging market • Identification of the different application areas of dynamics, which describe factors currently driving and wireless chargers along with analysis and forecasts of restraining the growth of the market as well as their segments with high growth potential impact in the long run • Geographical analysis of the wireless charging • Opportunities and innovation driven wireless charging technology market market highlights, R&D trends, and the major regions • Key growth strategies of companies in wireless charging and countries involved in such developments market provided through an analysis of the competitive • Analysis of the related technologies used for wireless landscape chargers, along with identification of technologies with high growth potential Report Overview Eliminating the need for cords, cables, and wires is the aim of brief description of the various technologies used for wireless wireless charging.
    [Show full text]
  • Wireless Charging Patents Mentioning Gan Power Device Market Position Vs IP Position KNOWMADE COMPANY PRESENTATION 232
    Wireless JAXA Charging Patent Landscape Analysis US9248751 NXP November 2017 US9306633 Samsung WO2017120544 KnowMade Patent & Technology Intelligence © 2017 | TABLE OF CONTENTS INTRODUCTION 6 IP position on far-field technologies Non-radiative wireless power transfer Time evolution of main patent assignees Key IP players on far-field technologies Radiative wireless power transfer Time evolution of countries of patent filings IP leadership Applications Time evolution of patent applications by WPT technology IP strength index Market data Time evolution of patent applications by application Geographic coverage vs. Impact factor Countries of filings vs. technologies/applications IP portfolio size vs. IP strength index SCOPE AND OBJECTIVES OF THE REPORT 22 Patents split by technologies and corresponding legal status IP blocking potential Mapping of main patent owners for near-field technologies Overview of main assignee’s IP position METHODOLOGY 28 Mapping of main patent applicants for near-field technologies Market position vs IP position Patent search, selection and segmentation Mapping of main patent owners for far-field technologies IP and market position overview Definitions Mapping of main patent applicants for far-field technologies Integrators and end-users Patents split by applications and corresponding legal status Component and device makers NOTEWORTHY NEWS (2016-2017) 39 Mapping of main patent owners for consumer applications Pure play companies and R&D laboratories Mapping of main patent applicants for consumer applications EXECUTIVE SUMMARY 41 Mapping of main patent owners for transport applications PATENT LITIGATIONS 147 Mapping of main patent applicants for transport applications Potential future plaintiffs PATENT LANDSCAPE OVERVIEW 59 Mapping of main patent owners for healthcare applications Boston Scientific vs.
    [Show full text]
  • Wireless Charging Technologies: Fundamentals, Standards, And
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, TO APPEAR 1 Wireless Charging Technologies: Fundamentals, Standards, and Network Applications Xiao Lu†, Ping Wang‡, Dusit Niyato‡, Dong In Kim§, and Zhu Han≀ † Department of Electrical and Computer Engineering, University of Alberta, Canada ‡ School of Computer Engineering, Nanyang Technological University, Singapore § School of Information and Communication Engineering, Sungkyunkwan University (SKKU), Korea ≀ Electrical and Computer Engineering, University of Houston, Texas, USA. Abstract—Wireless charging is a technology of transmitting Firstly, it improves user-friendliness as the hassle from • power through an air gap to electrical devices for the pur- connecting cables is removed. Different brands and dif- pose of energy replenishment. The recent progress in wireless ferent models of devices can also use the same charger. charging techniques and development of commercial products Secondly, it renders the design and fabrication of much have provided a promising alternative way to address the energy • bottleneck of conventionally portable battery-powered devices. smaller devices without the attachment of batteries. However, the incorporation of wireless charging into the existing Thirdly, it provides better product durability (e.g., water- • wireless communication systems also brings along a series of proof and dustproof) for contact-free devices. challenging issues with regard to implementation, scheduling, and Fourthly, it enhances flexibility, especially for the devices power management. In this article, we present a comprehensive • overview of wireless charging techniques, the developments for which replacing their batteries or connecting cables in technical standards, and their recent advances in network for charging is costly, hazardous, or infeasible (e.g., body- applications. In particular, with regard to network applications, implanted sensors).
    [Show full text]
  • Magnetic MIMO: How to Charge Your Phone in Your Pocket
    Magnetic MIMO: How To Charge Your Phone in Your Pocket Jouya Jadidian Dina Katabi Massachusetts Institute of Technology {jouya, dk}@mit.edu ABSTRACT and can charge a phone independently of its orientation. One could This paper bridges wireless communication with wireless power then attach a charging pad below the desk and use it to charge the transfer. It shows that mobile phones can be charged remotely, while user’s phone whenever she is sitting at her desk. With such a setup, in the user’s pocket by applying the concept of MIMO beamform- many of us would hardly ever need to take a phone out of our pocket ing. However, unlike MIMO beamforming in communication sys- to charge it. Achieving this vision however is not easy given the di- tems which targets the radiated field, we transfer power by beam- rectionality and fast drop in the magnetic field. forming the non-radiated magnetic field and steering it toward the This paper delivers a system that can charge a cell phone at dis- phone. We design MagMIMO, a new system for wireless charging tances of about 40 cm, and works independently of how the phone is of cell phones and portable devices. MagMIMO consumes as much oriented in the user’s pocket. Our approach builds on analogous de- power as existing solutions, yet it can charge a phone remotely with- signs common for wireless data communications. Wireless commu- out being removed from the user’s pocket. Furthermore, the phone nications use multi-antenna beamforming to concentrate the energy need not face the charging pad, and can charge independently of its of a signal in a particular direction in space.
    [Show full text]