Diamonds from the Sky - C2CNT, the inexpensive transformaon of CO2 to carbon nanotubes Stuart Licht,
[email protected] presentaon to: the Naonal Academy Washington, DC, March 2018 Not for reproducon. All rights retained by George Washington University. Stuart Licht – 30 years solar chemistry & climate change mitigation expertise Academic credenals Deans’s Research Prof. George Washington Univ. Former NSF Program Director (Chemistry Division) Former Professor Technion Professor of Chemistry Former Chair – UMass Dept. of Chemistry Former Carlson Chair Assoc. Prof. of Chemsitry Postdoc: MIT (with Prof. Mark Wrighton) Ph.D. in chemistry: Weizmann Instute of Science B.Sc. & M.Sc. in chem&phys: Wesleyan University 2 Stuart Licht – 30 years solar chemistry & climate change mitigation expertise ~400 peer reviewed papers & patents 2014 3 Addressing climate change: What if we could convert CO2 to a product worth over 1,000 times more than coal? Money talks loudly. This would provide economic incenve to remove CO2. We can. We do it now. Today, we present an alternave transformaon of carbon dioxide into a compact, stable, valuable product. This process provides an economic incenve to remove the greenhouse gas carbon dioxide. 1 Introduc;on of a soluon to remove atmospheric carbon dioxide & migate climate change A novel, high-yield, low energy process is shown to remove the greenhouse gas carbon dioxide. We have found a chemistry to produce high-yield, high purity, carbon nanotubes and carbon nanofibers products directly from either atmospheric or smokestack CO2. Such carbons are used to make strong carbon composites, such as used in the Boeing Dreamliner, as well as in high-end sports equipment, wind turbine blades and a host of other lightweight, high strength, flexible, products.