Biochemical Analysis of a Prokaryotic Deubiquitinase from Escherichia Coli Cameron Wade Purdue University

Total Page:16

File Type:pdf, Size:1020Kb

Biochemical Analysis of a Prokaryotic Deubiquitinase from Escherichia Coli Cameron Wade Purdue University Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations January 2016 Biochemical Analysis of a Prokaryotic Deubiquitinase from Escherichia Coli Cameron Wade Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Recommended Citation Wade, Cameron, "Biochemical Analysis of a Prokaryotic Deubiquitinase from Escherichia Coli" (2016). Open Access Theses. 1233. https://docs.lib.purdue.edu/open_access_theses/1233 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. *UDGXDWH6FKRRO)RUP 8SGDWHG PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance 7KLVLVWRFHUWLI\WKDWWKHWKHVLVGLVVHUWDWLRQSUHSDUHG %\ Cameron Wade (QWLWOHG BIOCHEMICAL ANALYSIS OF A PROKARYOTIC DEUBIQUITINASE FROM ESCHERICHIA COLI Master of Science )RUWKHGHJUHHRI ,VDSSURYHGE\WKHILQDOH[DPLQLQJFRPPLWWHH Chittaranjan Das Jean-Christophe Rochet Andrew D. Mesecar Mark C. Hall To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Chittaranjan Das $SSURYHGE\0DMRU3URIHVVRU V BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $SSURYHGE\Timothy Zwier 04/21/2016 +HDGRIWKH'HSDUWPHQW*UDGXDWH3URJUDP 'DWH BIOCHEMICAL ANALYSIS OF A PROKARYOTIC DEUBIQUITINASE FROM ESCHERICHIA COLI A Thesis Submitted to the Faculty of Purdue University by Cameron Wade In Partial Fulfillment of the Requirements of the Degree of Master of Science May 2016 Purdue University West Lafayette, Indiana ii TABLE OF CONTENTS Page LIST OF TABLES ............................................................................................................. iv LIST OF FIGURES .............................................................................................................v LIST OF ABBREVIATIONS ........................................................................................... vii ABSTRACT .........................................................................................................................x CHAPTER 1 INTRODUCTION .....................................................................................1 1.1 Ubiquitination ......................................................................................................1 1.2 Deubiquitination ..................................................................................................4 1.3 Escherichia coli ...................................................................................................6 1.4 Bacterial Deubiquitinases ....................................................................................8 1.4.1 ElaD ..........................................................................................................10 CHAPTER 2 MATERIALS AND METHODS .............................................................13 2.1 Creation of Genetic Constructs ..........................................................................13 2.1.1 Cloning ......................................................................................................13 2.1.2 Mutagenesis ..............................................................................................14 2.1.3 Loop Swap From SdeA Inserted into ElaD wt .........................................15 2.2 Expression and Solubility ..................................................................................16 2.3 Affinity Purification ...........................................................................................17 2.3.1 GST Tagged Protein Purification..............................................................18 2.3.1.1 Purification after removal of GST Tag ............................................19 2.3.2 Ubiquitin Purification ...............................................................................20 2.4 Activity Assays ..................................................................................................23 2.4.1 Ubiquitin-Propargylamide Shift Assay .....................................................23 2.4.2 Diubiquitin Cleavage Assay .....................................................................23 2.4.3 Polyubiquitinated Green Fluorescent Protein Cleavage Assay ................24 2.4.4 Maltose Binding Protein-Nedd8-Ubiquitin Complex Cleavage Assay ....25 iii Page CHAPTER 3 RESULTS ................................................................................................26 3.1 Preparation of Protein ........................................................................................26 3.1.1 Cloning ......................................................................................................26 3.1.2 Mutagenesis ..............................................................................................28 3.1.3 Protein Expression and Solubility Test Small Scale .................................29 3.1.4 Protein Purification ...................................................................................31 3.2 Assays ................................................................................................................32 3.2.1 Ubiquitin-Propargylamide Shift Assay .....................................................32 3.2.2 Diubiquitin Cleavage Assay .....................................................................33 3.2.3 Polyubiquitinated Green Fluorescent Protein Cleavage Assay ................35 3.2.4 Maltose Binding Protein-Nedd8-Ubiquitin Complex Cleavage Assay ....38 CHAPTER 4 DISCUSSION ..........................................................................................40 4.1 ElaD Chain Linkage Preference .........................................................................40 4.2 ElaD Loop Interactions on Substrate Selectivity ...............................................41 4.3 Conclusion .........................................................................................................42 LIST OF REFERENCES ...................................................................................................44 APPENDICES Appendix A ..................................................................................................................48 Appendix B ..................................................................................................................50 Appendix C ..................................................................................................................52 iv LIST OF TABLES Tables Page 1.1 Strain Dependence of ElaD .................................................................................... 10 3.1 List of ElaD Constructs .......................................................................................... 29 v LIST OF FIGURES Figure Page 1.1 Mechanism of Ubiquitination ................................................................................... 2 1.2 Ubiquitination Chain Types ..................................................................................... 3 1.3 Structure of Ubiquitin Like Proteins ........................................................................ 4 1.4 Infection Cycle of Enteropathogenic and Enterohemorrhagic Escherichia coli ............................................................................................................................ 7 1.5 Eukaryotic Cell Autophagy Defense Mechanism .................................................... 8 1.6 Crystal Structure of SdeA and Ubiquitin .................................................................. 9 1.7 Model of ElaD and Ubiquitin ................................................................................. 11 1.8 Model of ElaD Superimposed on SdeA ................................................................. 12 2.1 Polymerase Chain Reaction Protocol ..................................................................... 15 2.2 Expression and Solubility Test for GST-ElaD wt .................................................. 17 2.3 GST-ElaD C313A GST Purification ...................................................................... 19 2.4 S75 Size Exclusion Chromatogram for ElaD C313A ............................................ 20 2.5 Ubiquitin Purification Using Ion Exchange ........................................................... 22 3.1 Agarose Gel of Cloning ElaD from Rosetta Cell ................................................... 27 3.2 Agarose Gel of Cloning ElaD L6 Chimera ............................................................ 28 3.3 Expression and Solubility Test of ElaD C313A and ElaD L6 ............................... 30 3.4 Expression and Solubility Test of ElaD Loop Point Mutants ................................ 31 3.5 Ubiquitin-Propargylamide Shift Assay for ElaD Constructs ................................. 33 vi Figure Page 3.6 ElaD wt Diubiquitin Cleavage Assay ..................................................................... 34 3.7 ElaD L6 Diubiquitin Cleavage Assay .................................................................... 34 3.8 K63 Q40A Diubiquitin Cleavage Assay ................................................................ 35 3.9 ElaD constructs GFP-Ubn Cleavage Assay ............................................................ 36 3.10 ElaD L6 Varied Concentration and Time GFP-Ubn
Recommended publications
  • CYLD Is a Deubiquitinating Enzyme That Negatively Regulates NF-Kb
    letters to nature 13. Schwartz, S. et al. Human–mouse alignments with BLASTZ. Genome Res 13, 103–107 (2003). necrosis factor receptors (TNFRs). Loss of the deubiquitinating 14. Schwartz, S. et al. MultiPipMaker and supporting tools: alignments and analysis of multiple genomic activity of CYLD correlates with tumorigenesis. CYLD inhibits DNA sequences. Nucleic Acids Res. 31, 3518–3524 (2003). 15.Murphy,W.J.et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. activation of NF-kB by the TNFR family members CD40, XEDAR Science 294, 2348–2351 (2001). and EDAR in a manner that depends on the deubiquitinating 16. Poux, C., Van Rheede, T., Madsen, O. & de Jong, W. W. Sequence gaps join mice and men: activity of CYLD. Downregulation of CYLD by RNA-mediated phylogenetic evidence from deletions in two proteins. Mol. Biol. Evol. 19, 2035–2037 (2002). 17. Huelsenbeck, J. P., Larget, B. & Swofford, D. A compound Poisson process for relaxing the molecular interference augments both basal and CD40-mediated activation clock. Genetics 154, 1879–1892 (2000). of NF-kB. The inhibition of NF-kBactivationbyCYLDis 18. Cooper, G. M. et al. Quantitative estimates of sequence divergence for comparative analyses of mediated, at least in part, by the deubiquitination and inacti- mammalian genomes. Genome Res. 13, 813–820 (2003). vation of TNFR-associated factor 2 (TRAF2) and, to a lesser 19. Siepel, A. & Haussler, D. Proc. 7th Annual Int. Conf. Research in Computational Molecular Biology (ACM, New York, 2003). extent, TRAF6. These results indicate that CYLD is a negative 20. Hardison, R. C. et al. Covariation in frequencies of substitution, deletion, transposition, and regulator of the cytokine-mediated activation of NF-kB that is recombination during eutherian evolution.
    [Show full text]
  • A Drosophila Ortholog of the Human Cylindromatosis Tumor Suppressor
    RESEARCH ARTICLE 2605 Development 134, 2605-2614 (2007) doi:10.1242/dev.02859 A Drosophila ortholog of the human cylindromatosis tumor suppressor gene regulates triglyceride content and antibacterial defense Theodore Tsichritzis1, Peer C. Gaentzsch3, Stylianos Kosmidis2, Anthony E. Brown3, Efthimios M. Skoulakis2, Petros Ligoxygakis3,* and George Mosialos1,4,* The cylindromatosis (CYLD) gene is mutated in human tumors of skin appendages. It encodes a deubiquitylating enzyme (CYLD) that is a negative regulator of the NF-␬B and JNK signaling pathways, in vitro. However, the tissue-specific function and regulation of CYLD in vivo are poorly understood. We established a genetically tractable animal model to initiate a systematic investigation of these issues by characterizing an ortholog of CYLD in Drosophila. Drosophila CYLD is broadly expressed during development and, in adult animals, is localized in the fat body, ovaries, testes, digestive tract and specific areas of the nervous system. We demonstrate that the protein product of Drosophila CYLD (CYLD), like its mammalian counterpart, is a deubiquitylating enzyme. Impairment of CYLD expression is associated with altered fat body morphology in adult flies, increased triglyceride levels and increased survival under starvation conditions. Furthermore, flies with compromised CYLD expression exhibited reduced resistance to bacterial infections. All mutant phenotypes described were reversible upon conditional expression of CYLD transgenes. Our results implicate CYLD in a broad range of functions associated with fat homeostasis and host defence in Drosophila. KEY WORDS: Cylindromatosis, Drosophila, Fat body, Host defense, NF-kappaB INTRODUCTION disease and it is required for the proper development of T Familial cylindromatosis is an autosomal-dominant predisposition lymphocytes in mice (Costello et al., 2005; Reiley et al., 2006).
    [Show full text]
  • Deubiquitinases in Cancer: New Functions and Therapeutic Options
    Oncogene (2012) 31, 2373–2388 & 2012 Macmillan Publishers Limited All rights reserved 0950-9232/12 www.nature.com/onc REVIEW Deubiquitinases in cancer: new functions and therapeutic options JM Fraile1, V Quesada1, D Rodrı´guez, JMP Freije and C Lo´pez-Otı´n Departamento de Bioquı´mica y Biologı´a Molecular, Facultad de Medicina, Instituto Universitario de Oncologı´a, Universidad de Oviedo, Oviedo, Spain Deubiquitinases (DUBs) have fundamental roles in the Hunter, 2010). Consistent with the functional relevance ubiquitin system through their ability to specifically of proteases in these processes, alterations in their deconjugate ubiquitin from targeted proteins. The human structure or in the mechanisms controlling their genome encodes at least 98 DUBs, which can be grouped spatiotemporal expression patterns and activities cause into 6 families, reflecting the need for specificity in diverse pathologies such as arthritis, neurodegenerative their function. The activity of these enzymes affects the alterations, cardiovascular diseases and cancer. Accord- turnover rate, activation, recycling and localization ingly, many proteases are an important focus of of multiple proteins, which in turn is essential for attention for the pharmaceutical industry either as drug cell homeostasis, protein stability and a wide range of targets or as diagnostic and prognostic biomarkers signaling pathways. Consistent with this, altered DUB (Turk, 2006; Drag and Salvesen, 2010). function has been related to several diseases, including The recent availability of the genome sequence cancer. Thus, multiple DUBs have been classified as of different organisms has facilitated the identification oncogenes or tumor suppressors because of their regula- of their entire protease repertoire, which has been tory functions on the activity of other proteins involved in defined as degradome (Lopez-Otin and Overall, 2002).
    [Show full text]
  • Untying the Knot: Protein Quality Control in Inherited Cardiomyopathies
    Pflügers Archiv - European Journal of Physiology https://doi.org/10.1007/s00424-018-2194-0 INVITED REVIEW Untying the knot: protein quality control in inherited cardiomyopathies Larissa M. Dorsch1 & Maike Schuldt1 & Dora Knežević1 & Marit Wiersma1 & Diederik W. D. Kuster1 & Jolanda van der Velden1 & Bianca J. J. M. Brundel1 Received: 30 July 2018 /Accepted: 6 August 2018 # The Author(s) 2018 Abstract Mutations in genes encoding sarcomeric proteins are the most important causes of inherited cardiomyopathies, which are a major cause of mortality and morbidity worldwide. Although genetic screening procedures for early disease detection have been improved significantly, treatment to prevent or delay mutation-induced cardiac disease onset is lacking. Recent findings indicate that loss of protein quality control (PQC) is a central factor in the disease pathology leading to derailment of cellular protein homeostasis. Loss of PQC includes impairment of heat shock proteins, the ubiquitin-proteasome system, and autophagy. This may result in accumulation of misfolded and aggregation-prone mutant proteins, loss of sarcomeric and cytoskeletal proteins, and, ultimately, loss of cardiac function. PQC derailment can be a direct effect of the mutation-induced activation, a compensa- tory mechanism due to mutation-induced cellular dysfunction or a consequence of the simultaneous occurrence of the mutation and a secondary hit. In this review, we discuss recent mechanistic findings on the role of proteostasis derailment in inherited cardiomyopathies, with special focus on sarcomeric gene mutations and possible therapeutic applications. Keywords Cardiomyopathy .Proteinqualitycontrol .Sarcomericmutation .Heatshockproteins .Ubiquitin-proteasomesystem . Autophagy Classification of cardiomyopathies occurring asymmetrically, and dilated CM (DCM), in which the presence of LV dilatation is accompanied by contractile Cardiomyopathies (CM) constitute one of the most common dysfunction [24].
    [Show full text]
  • Uncovering Ubiquitin and Ubiquitin-Like Signaling Networks Alfred C
    REVIEW pubs.acs.org/CR Uncovering Ubiquitin and Ubiquitin-like Signaling Networks Alfred C. O. Vertegaal* Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands CONTENTS 8. Crosstalk between Post-Translational Modifications 7934 1. Introduction 7923 8.1. Crosstalk between Phosphorylation and 1.1. Ubiquitin and Ubiquitin-like Proteins 7924 Ubiquitylation 7934 1.2. Quantitative Proteomics 7924 8.2. Phosphorylation-Dependent SUMOylation 7935 8.3. Competition between Different Lysine 1.3. Setting the Scenery: Mass Spectrometry Modifications 7935 Based Investigation of Phosphorylation 8.4. Crosstalk between SUMOylation and the and Acetylation 7925 UbiquitinÀProteasome System 7935 2. Ubiquitin and Ubiquitin-like Protein Purification 9. Conclusions and Future Perspectives 7935 Approaches 7925 Author Information 7935 2.1. Epitope-Tagged Ubiquitin and Ubiquitin-like Biography 7935 Proteins 7925 Acknowledgment 7936 2.2. Traps Based on Ubiquitin- and Ubiquitin-like References 7936 Binding Domains 7926 2.3. Antibody-Based Purification of Ubiquitin and Ubiquitin-like Proteins 7926 1. INTRODUCTION 2.4. Challenges and Pitfalls 7926 Proteomes are significantly more complex than genomes 2.5. Summary 7926 and transcriptomes due to protein processing and extensive 3. Ubiquitin Proteomics 7927 post-translational modification (PTM) of proteins. Hundreds ff fi 3.1. Proteomic Studies Employing Tagged of di erent modi cations exist. Release 66 of the RESID database1 (http://www.ebi.ac.uk/RESID/) contains 559 dif- Ubiquitin 7927 ferent modifications, including small chemical modifications 3.2. Ubiquitin Binding Domains 7927 such as phosphorylation, acetylation, and methylation and mod- 3.3. Anti-Ubiquitin Antibodies 7927 ification by small proteins, including ubiquitin and ubiquitin- 3.4.
    [Show full text]
  • (51) International Patent Classification: Declarations Under Rule 4.17
    l ( (51) International Patent Classification: Declarations under Rule 4.17: A61K 31/55 (2006.01) A61K 45/06 (2006.01) — as to applicant's entitlement to apply for and be granted a A61K 39/00 (2006.01) A61P 35/00 (2006.01) patent (Rule 4.17(H)) (21) International Application Number: — as to the applicant's entitlement to claim the priority of the PCT/IB20 19/057 160 earlier application (Rule 4.17(iii)) (22) International Filing Date: Published: 26 August 2019 (26.08.2019) — with international search report (Art. 21(3)) — before the expiration of the time limit for amending the (25) Filing Language: English claims and to be republished in the event of receipt of (26) Publication Language: English amendments (Rule 48.2(h)) — in black and white; the international application as filed (30) Priority Data: contained color or greyscale and is available for download 62/724,190 29 August 2018 (29.08.2018) US from PATENTSCOPE 62/837,346 23 April 2019 (23.04.2019) US (71) Applicant: GLAXOSMITHKLINE INTELLECTUAL PROPERTY DEVELOPMENT LIMITED [GB/GB]; 980 Great West Road, Brentford, Middlesex TW8 9GS (GB). (72) Inventors: ANBARI, Jill Marinis; 1250 South Col- legeville Road, Collegeville, PA 19426 (US). REILLY, Michael; 1250 South Collegeville Road, Collegeville, PA 19426 (US). MAHAJAN, Mukesh K.; 1250 South Col¬ legeville Road, Collegeville, PA 19426 (US). RATHI, Chetan; 1250 South Collegeville Road, Collegeville, PA 19426 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Chlamydia Trachomatis-Containing Vacuole Serves As Deubiquitination
    RESEARCH ARTICLE Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense Annette Fischer1, Kelly S Harrison2, Yesid Ramirez3, Daniela Auer1, Suvagata Roy Chowdhury1, Bhupesh K Prusty1, Florian Sauer3, Zoe Dimond2, Caroline Kisker3, P Scott Hefty2, Thomas Rudel1* 1Department of Microbiology, Biocenter, University of Wu¨ rzburg, Wu¨ rzburg, Germany; 2Department of Molecular Biosciences, University of Kansas, lawrence, United States; 3Rudolf Virchow Center for Experimental Biomedicine, University of Wu¨ rzburg, Wu¨ rzburg, Germany Abstract Obligate intracellular Chlamydia trachomatis replicate in a membrane-bound vacuole called inclusion, which serves as a signaling interface with the host cell. Here, we show that the chlamydial deubiquitinating enzyme (Cdu) 1 localizes in the inclusion membrane and faces the cytosol with the active deubiquitinating enzyme domain. The structure of this domain revealed high similarity to mammalian deubiquitinases with a unique a-helix close to the substrate-binding pocket. We identified the apoptosis regulator Mcl-1 as a target that interacts with Cdu1 and is stabilized by deubiquitination at the chlamydial inclusion. A chlamydial transposon insertion mutant in the Cdu1-encoding gene exhibited increased Mcl-1 and inclusion ubiquitination and reduced Mcl- 1 stabilization. Additionally, inactivation of Cdu1 led to increased sensitivity of C. trachomatis for IFNg and impaired infection in mice. Thus, the chlamydial inclusion serves as an enriched site for a *For correspondence: thomas. deubiquitinating activity exerting a function in selective stabilization of host proteins and [email protected]. protection from host defense. de DOI: 10.7554/eLife.21465.001 Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • The COP9 Signalosome Variant CSNCSN7A Stabilizes the Deubiquitylating Enzyme CYLD Impeding Hepatic Steatosis
    Article The COP9 Signalosome Variant CSNCSN7A Stabilizes the Deubiquitylating Enzyme CYLD Impeding Hepatic Steatosis Xiaohua Huang 1,* , Dawadschargal Dubiel 2 and Wolfgang Dubiel 2,3,*,† 1 Charité—Universitätsmedizin Berlin, Chirurgische Klinik, Campus Charité Mitte|Campus Virchow-Klinikum, Experimentelle Chirurgie und Regenerative Medizin, Augustenburger Platz 1, 13353 Berlin, Germany 2 Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; [email protected] 3 State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang’an South Road, Xiamen 361102, China * Correspondence: [email protected] (X.H.); [email protected] (W.D.) † Lead Contact. Abstract: Hepatic steatosis is a consequence of distorted lipid storage and plays a vital role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). This study aimed to explore the role of the COP9 signalosome (CSN) in the development of hepatic steatosis and its interplay with the deubiquitylating enzyme (DUB) cylindromatosis (CYLD). CSN occurs as CSNCSN7A and CSNCSN7B variants regulating the ubiquitin proteasome system. It is a deneddylating complex and associates with other DUBs. CYLD cleaves Lys63-ubiquitin chains, regulating a signal cascade that mitigates hepatic steatosis. CSN subunits CSN1 and CSN7B, as well as CYLD, were downregulated with specific siRNA in HepG2 cells and human primary hepatocytes. The same cells were transfected Citation: Huang, X.; Dubiel, D.; with Flag-CSN7A or Flag-CSN7B for pulldowns. Hepatic steatosis in cell culture was induced Dubiel, W. The COP9 Signalosome by palmitic acid (PA). Downregulation of CSN subunits led to reduced PPAR-γ expression.
    [Show full text]
  • Mrvr, a Group B Streptococcus Transcription Factor That Controls Multiple Virulence Traits
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.17.386367; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 4 MrvR, a Group B Streptococcus Transcription Factor that Controls Multiple Virulence Traits 5 6 Allison N. Dammann1, Anna B. Chamby2, Andrew J. Catomeris3, Kyle M. Davidson4, Hervé 7 Tettelin5,6, Jan-Peter van Pijkeren7, Kathyayini P. Gopalakrishna4, Mary F. Keith4, Jordan L. 8 Elder4, Adam J. Ratner1,8, Thomas A. Hooven4,9* 9 10 1 Department of Pediatrics, New York University School of Medicine, New York, NY, USA 11 12 2 University of Vermont Larner College of Medicine, Burlington, VT, USA 13 14 3 Georgetown University School of Medicine, Washington, DC, USA 15 16 4 Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 17 18 5 Department of Microbiology and Immunology, University of Maryland School of Medicine, 19 Baltimore, MD, USA 20 21 6 Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 22 USA 23 24 7 Department of Food Science, University of Wisconsin, Madison, WI, USA 25 26 8 Department of Microbiology, New York University, New York, NY, USA 27 28 9 Richard King Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, 29 Pittsburgh, PA, USA 30 31 * Corresponding author 32 E-mail: [email protected] 33 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.17.386367; this version posted November 17, 2020.
    [Show full text]
  • Molecular Chaperones & Stress Responses
    Abstracts of papers presented at the 2010 meeting on MOLECULAR CHAPERONES & STRESS RESPONSES May 4–May 8, 2010 CORE Metadata, citation and similar papers at core.ac.uk Provided by Cold Spring Harbor Laboratory Institutional Repository Cold Spring Harbor Laboratory Cold Spring Harbor, New York Abstracts of papers presented at the 2010 meeting on MOLECULAR CHAPERONES & STRESS RESPONSES May 4–May 8, 2010 Arranged by F. Ulrich Hartl, Max Planck Institute for Biochemistry, Germany David Ron, New York University School of Medicine Jonathan Weissman, HHMI/University of California, San Francisco Cold Spring Harbor Laboratory Cold Spring Harbor, New York This meeting was funded in part by the National Institute on Aging; the National Heart, Lung and Blood Institute; and the National Institute of General Medical Sciences; branches of the National Institutes of Health; and Enzo Life Sciences, Inc. Contributions from the following companies provide core support for the Cold Spring Harbor meetings program. Corporate Sponsors Agilent Technologies Life Technologies (Invitrogen & AstraZeneca Applied Biosystems) BioVentures, Inc. Merck (Schering-Plough) Research Bristol-Myers Squibb Company Laboratories Genentech, Inc. New England BioLabs, Inc. GlaxoSmithKline OSI Pharmaceuticals, Inc. Hoffmann-La Roche Inc. Sanofi-Aventis Plant Corporate Associates Monsanto Company Pioneer Hi-Bred International, Inc. Foundations Hudson-Alpha Institute for Biotechnology Front cover, top: HSP90, a regulator of cell survival. Inhibition of HSP90 activity by drugs like geldanamycin (GA) destabilizes client proteins which ultimately lead to the onset of apoptosis. Dana Haley-Vicente, Assay Designs (an Enzo Life Sciences company). Front cover, bottom: C. elegans expressing a proteotoxic polyglutamine- expansion protein. Richard Morimoto, Northwestern University.
    [Show full text]
  • Targeting the Ubiquitin System in Glioblastoma', Frontiers in Oncology
    Citation for published version: Licchesi, J 2020, 'Targeting the Ubiquitin System in Glioblastoma', Frontiers in Oncology. https://doi.org/10.3389/fonc.2020.574011 DOI: 10.3389/fonc.2020.574011 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link to publication University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Sep. 2021 REVIEW published: 25 November 2020 doi: 10.3389/fonc.2020.574011 Targeting the Ubiquitin System in Glioblastoma Nico Scholz 1, Kathreena M. Kurian 2, Florian A. Siebzehnrubl 3 and Julien D. F. Licchesi 1* 1 Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom, 2 Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom, 3 Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options.
    [Show full text]
  • Figure S1. HAEC ROS Production and ML090 NOX5-Inhibition
    Figure S1. HAEC ROS production and ML090 NOX5-inhibition. (a) Extracellular H2O2 production in HAEC treated with ML090 at different concentrations and 24 h after being infected with GFP and NOX5-β adenoviruses (MOI 100). **p< 0.01, and ****p< 0.0001 vs control NOX5-β-infected cells (ML090, 0 nM). Results expressed as mean ± SEM. Fold increase vs GFP-infected cells with 0 nM of ML090. n= 6. (b) NOX5-β overexpression and DHE oxidation in HAEC. Representative images from three experiments are shown. Intracellular superoxide anion production of HAEC 24 h after infection with GFP and NOX5-β adenoviruses at different MOIs treated or not with ML090 (10 nM). MOI: Multiplicity of infection. Figure S2. Ontology analysis of HAEC infected with NOX5-β. Ontology analysis shows that the response to unfolded protein is the most relevant. Figure S3. UPR mRNA expression in heart of infarcted transgenic mice. n= 12-13. Results expressed as mean ± SEM. Table S1: Altered gene expression due to NOX5-β expression at 12 h (bold, highlighted in yellow). N12hvsG12h N18hvsG18h N24hvsG24h GeneName GeneDescription TranscriptID logFC p-value logFC p-value logFC p-value family with sequence similarity NM_052966 1.45 1.20E-17 2.44 3.27E-19 2.96 6.24E-21 FAM129A 129. member A DnaJ (Hsp40) homolog. NM_001130182 2.19 9.83E-20 2.94 2.90E-19 3.01 1.68E-19 DNAJA4 subfamily A. member 4 phorbol-12-myristate-13-acetate- NM_021127 0.93 1.84E-12 2.41 1.32E-17 2.69 1.43E-18 PMAIP1 induced protein 1 E2F7 E2F transcription factor 7 NM_203394 0.71 8.35E-11 2.20 2.21E-17 2.48 1.84E-18 DnaJ (Hsp40) homolog.
    [Show full text]