Put to the Test on Board the International Space Station ISS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TRACKING and DATA ACQUISITION/ SPACE OPERATIONS **DB Chap 4(297-321) 1/17/02 12:29 PM Page 299
**DB Chap 4(297-321) 1/17/02 12:29 PM Page 297 CHAPTER FOUR TRACKING AND DATA ACQUISITION/ SPACE OPERATIONS **DB Chap 4(297-321) 1/17/02 12:29 PM Page 299 CHAPTER FOUR TRACKING AND DATA ACQUISITION/ SPACE OPERATIONS Introduction NASA’s tracking and data acquisition program provided vital support for all NASA flight projects. NASA also supported, on a reimbursable basis, projects of the Department of Defense, other government agencies, commercial firms, and other countries and international organizations engaged in space research activities. The tracking and data acquisition program supported sounding rock- ets and balloons, research aircraft, Earth orbital and suborbital missions, planetary spacecraft, and deep space probes. The support included: • Tracking to determine the position and trajectory of vehicles in space • Acquisition of scientific and Earth applications data from on-board experiments and sensors • Acquisition of engineering data on the performance of spacecraft and launch vehicle systems • Transmission of commands from ground stations to spacecraft • Communication with astronauts • Communication of information among the various ground facilities and central control centers • Processing of data acquired from launch vehicles and spacecraft • Reception of television transmission from space vehicles NASA established three types of support capabilities: • The Spaceflight Tracking and Data Network (STDN) supported low- Earth orbital missions. • The Deep Space Network (DSN) supported planetary and interplane- tary flight missions. It also supported geosynchronous and highly elliptical missions and those in low-Earth orbit not compatible with the Tracking and Data Relay Satellite System (TDRSS). • The TDRSS provided low-Earth orbital mission support and reduced NASA’s need for an extensive network of ground stations. -
Paper Session III-A-History of the First NASA Contract with Russia
1994 (31st) Space Exploration and Utilization The Space Congress® Proceedings for the Good of the World Apr 28th, 2:00 PM - 5:00 PM Paper Session III-A - History of the First NASA Contract with Russia Barbara D. Connelly-Fratzke NASA Headquarters, Office of Space Systems Development Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Connelly-Fratzke, Barbara D., "Paper Session III-A - History of the First NASA Contract with Russia" (1994). The Space Congress® Proceedings. 18. https://commons.erau.edu/space-congress-proceedings/proceedings-1994-31st/april-28-1994/18 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. History of the First NASA Contract with Russia Barbara D. Connelly-Fratzke NASA Headquarters Office of Space Systems Development This story begins after the end of the cold war with the Soviet Union. after perestroika had its initial impact on the economy, at about the time the Russian space firms were beginning to lose government support and fac ing hard times ahead. As part or the FY92 Budget approval, Congress, in its wisdom, directed NASA to investigate the Russian space hardware and determine its feasibility for use in the U.S. space program. At the invitation of the U.S. Embassy in Moscow and the Russian firm NPO Energia, NASA made a reconnaissance visit to NPO Energia to open discussions concerning Russian space hardware. -
Accuracy, Precision, and Performance of Satellite Telemetry for Monitoring Wolf Movements Within Each Category
Accuracy, Precision, and Pedormance of Satellite Telemetry for Monitoring Wolf Movements • Warren B. Ballard, Daniel J. Reed, Steven G. Fancy, and Paul R. Krausman We placed 23 satellite platform transmitter terminals (1.08-I.22 kg) on wolves in northwest Alaska during I987 through I99I. Male and female wolves aged I 0 months to eight years were monitored with no apparent adverse effects on them. We obtained 3 ,80I relocations from the 23 transmitters, an average of 29 relocations/month from each. Transmitters were programmed to operate four to six hours every two days and had a mean life span (including days before and after use on a wolf) of253 days (range= 67-482 days). Average life span while attached to wolves was I8I days (range= 50-366 days). Accuracy of I ,885 relocations at seven known sites varied among transmitters and averaged 336 and 728 mfor best and low quality relocations, respectively. The estimated locations from several transmitters were biased toward south and west directions. Costs (I992) per satellite relocation averaged about $44 U.S., in comparison to about $I66 with conventional telemetry methods using fixed-wing aircraft. Satellite telemetry has great potential for providing improved data sets for evaluation ofwolfterritory sizes and movements, but currently lacks accuracy and precision for detailed habitat or landscape use assessments. Introduction three reports provided evaluations of the systems after 1987 when Service Argos made improvements in calculating lo Satellite telemetry has become a widely accepted tool for cations and quality indices (Keating et al. 1991). Ofthe latter studying movements oflarge mammals and birds (Fancy et three studies, only Keating et al. -
Radio Telemetry and Bird Movements
95 Chapter 7 Radio telemetry and bird movements RADIO TELEMETRY Understanding the role that wildlife play in the ecology of AI viruses requires knowledge of the detailed movements of wild birds over varying spatial scales. On the one hand, con- currence between the migratory patterns of some Palearctic breeding waterbirds and the spread of the H5N1 HPAI virus across Asia and Europe in the northern fall and winter of 2005/06 illustrates the importance of studies designed to identify specific migratory routes, stopover points and non-breeding areas that may span entire continents. On the other hand, studies documenting the local movements of wild birds between poultry farms and nearby wetlands may be invaluable to establish viable pathways of H5N1 HPAI transmission from poultry to wildlife (or vice versa). Radio telemetry is a technique for determining bird movements over areas ranging in size from the restricted breeding territories of resident bird species to the movement pat- terns of international migratory species (reviewed in Fuller et al. 2005). Radio telemetry has important applications in the investigation of infectious diseases of migratory species, including H5N1 AI virus ecology. Specific objectives for AI-related telemetry studies have already been identified during the FAO-OIE International Scientific Conference on Avian Influenza and Wild Birds in May 200610. In fact, telemetry projects tracking the local move- ments and migration routes of wild birds identified as potential virus hosts are already under way11. The basic concept of a radio telemetry study sounds simple; attach a radio transmitter to an animal and track the signal to determine the animal’s movements. -
Demonstration of Satellite/GPS Telemetry for Monitoring Fine- Scale Movements of Lesser Prairie-Chickens
United States Department of Agriculture Forest Service National Technology & Demonstration of Development Program Inventory and Monitoring 1219 1813—SDTDC Satellite/GPS Telemetry December 2012 for Monitoring Fine- Scale Movements of Lesser Prairie-Chickens Demonstration of Satellite/GPS Telemetry for Monitoring Fine-Scale Movements of Lesser Prairie-Chickens Rey Farve, Project Leader Forest Service San Dimas Technology & Development Center December 2012 The information contained in this publication has been developed for the guidance of employees of the Forest Service, U.S. Department of Agriculture, its contractors, and cooperating Federal and State agencies. The Forest Service assumes no responsibility for the interpretation or use of this information by other than its own employees. The use of trade, firm, or corporation names is for the information and convenience of the reader. Such use does not constitute an official evaluation, conclusion, recommendation, endorsement, or approval of any product or service to the exclusion of others that may be suitable. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. -
Proposals on Spw Evolution
ROSCOSMOS Igor V. Orlovsky Deputy Head of Onboard Control Systems Division Alexey A. Khakhulin Team Manager, Next‐Generation Onboard Control Systems Developm th 16 SpaceWire Working Group, 21‐23 March 2011 ESA/ESTEC, Noorwijk, The Netherla Rocket and Space Corporation Energia named after Sergei Korolev Rocket and Space Corporation Energia after S.P. Korolev Rocket is the strategic enterprise of Russia and the leading company engaged in manned space systems. A great deal of attention is focused on the development of new space technologies, including dedicated unmanned space systems for various applications, rocket systems for spacecraft orbital injection. Its presence is noticeable on the international market of rocket and space services. It is the leader in introducing space high technologies for manufacture of products not related to space industry. Its structure: •Primary Design Bureau; •Baikonur branch; •ZAO Experimental Machinebuilding Plant, RSC Energia; •ZAO Volzhskoye DB; •ZAO PO Kosmos, RSC Energia; •Developed social infrastructure. •38% of the Corporation equity is owned by the state. CORE ACTIVITIES • Manned Space Systems • Unmanned Space Systems • Rocket Systems • Advanced Programs • Provision of Services CRUCIALLY IMPORTANT REQUIREMENTS FOR ONBOARD INTERFACES . providing equipment scalability . easy upgrading . supporting real-time transmission of large amounts of data and time-critical commands and data within a broad range of data rates and transmission distances . etc Up to now it has been very difficult to develop an all‐purpose interface. SPACEWIRE AS A BASE FOR NEXT‐GENERATION ONBOARD CONTROL SYSTEM Parameters of SpaceWire interface are closest to meeting the requirements of the all-purpose interface but along with significant advantages, has certain drawbacks. -
Space-Based Telemetry and Range Safety Project Ku-Band and Ka-Band Phased Array Antenna
NASA/TM-2005-212872 Space-Based Telemetry and Range Safety Project Ku-Band and Ka-Band Phased Array Antenna Donald E. Whiteman NASA Dryden Flight Research Center Edwards, California Lisa M. Valencia NASA John F. Kennedy Space Center Kennedy Space Center, Florida Richard B. Birr ASRC Aerospace Corporation NASA John F. Kennedy Space Center Kennedy Space Center, Florida July 2005 The NASA STI Program Office…in Profile Since its founding, NASA has been dedicated •CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA Scientific and Technical technical conferences, symposia, seminars, Information (STI) Program Office plays a key or other meetings sponsored or co-sponsored part in helping NASA maintain this by NASA. important role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program Office is operated by technical, or historical information from Langley Research Center, the lead center for NASA programs, projects, and missions, NASA’s scientific and technical information. often concerned with subjects having The NASA STI Program Office provides access substantial public interest. to the NASA STI Database, the largest collection of aeronautical and space science STI in the • TECHNICAL TRANSLATION. English- world. The Program Office is also NASA’s language translations of foreign scientific institutional mechanism for disseminating the and technical material pertinent to results of its research and development activities. NASA’s mission. These results are published by NASA in the NASA STI Report Series, which includes the Specialized services that complement the STI following report types: Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research • TECHNICAL PUBLICATION. -
What Wildlife Managers Should Know When Using Radio Telemetry Data
April 2018 Natural Resources/Wildlife/2018-02pr WHAT WILDLIFE MANAGERS SHOULD KNOW WHEN USING RADIO-TELEMETRY DATA David Dahlgren, Michel Kohl, and Terry Messmer History of Wildlife Radio-Telemetry antenna are employed for relocation and monitoring Radio-telemetry, the recording and transmitting of (Figure 2). information from an instrument, refers to attaching a radio-transmitter to an individual animal to The VHF radio-transmitters emit a signal at a monitor survival, movements, and habitat selection. predetermined rate; e.g., one pulse per second, and Since the late 1950s radio-transmitters have been when detected by a receiver the signal produces a deployed on wildlife to study their behavior and life “beep.” If a directional antenna is used, the biologist history. can triangulate the signal (i.e., using the bearings of the signal from different locations around the For the first few decades only very high frequency (VHF) radios were commonly available. Telemetry works in a manner similar to any radio system. There is a transmitter source sending out a signal at a given frequency (e.g., a radio “station”) and a receiver (e.g., a vehicle’s radio) is tuned to that frequency allowing us to hear the signal (e.g., music or talk show). Biologists attach radio-transmitters to animals, often a neck-lace style is used (Figure 1), and then a hand-held receiver and directional Figure 2. A biologist using a VHF directional antenna and receiver to detect Figure 1. Cow elk (Cervus canadensis) with a signals from radio-marked greater sage- necklace-style radio-transmitter. grouse (Centrocercus urophasianus). -
APPLICATION SPOTLIGHT Wireless Telemetry System Streamlines Water Distribution System of Open Pit Mining Operation Application Story
APPLICATION SPOTLIGHT Wireless Telemetry System Streamlines Water Distribution System of Open Pit Mining Operation Application Story Wireless Telemetry System Streamlines Water Distribution System of Open Pit Mining Operation A2 Long Range Node Gateway Stick Solar Powered Repeater Node APPLICATION: • C1D1 Solar Power System: consists of a solar panel, watertight battery and high-efficiency A mining company experienced problems when solar charger that provide power to the nodes. manually monitoring water flowing through a pipeline system that supported its open pit • Solar-Powered Repeater Node: extends the mining operations. Workers would travel along power of the SignalFire wireless mesh network the waterline that enveloped mountains at a in locations where power is unavailable. range of up to 11,000 feet to read ultrasonic flow meters that measured the mass flow rate of CHALLENGE: water several times a day. As the manual process was only as accurate as the last reading, a The mining company needed a remote water waterline break between operator visits resulted flow monitoring system that could: in undetected water running down a mountain and nearly flooding a nearby control building. • Operate wirelessly as wires represent an installation problem in the mountain terrain, To quickly identify any future waterline especially as land is reclaimed, replanted and breaks while adhering to strict environmental repurposed after mining completion. regulations on mining activities, the mining company wanted to streamline water flow • Perform reliably in snow and cold temperatures monitoring by adding capabilities for remote present in high mountain elevations. data collection as well as alarm notifications to maintain more timely status of the water • Maintain its own long-term energy source as distribution system. -
Improve Wildlife Species Tracking—Implementing an Enhanced Global Positioning System Data Management System for California Condors
Prepared in cooperation with the U.S. Fish and Wildlife Service, Region 8 Improve Wildlife Species Tracking—Implementing an Enhanced Global Positioning System Data Management System for California Condors By Robert G. Waltermire, Christopher U. Emmerich, Laura C. Mendenhall, Gil Bohrer, Rolf P. Weinzierl, Andrew J. McGann, Pat K. Lineback, Tim J. Kern, and David C. Douglas Open-File Report 2016–1030 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit http://store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested Citation: Waltermire, R.G., Emmerich, C.U., Mendenhall, L.C., Bohrer, Gil, Weinzierl, R.P., McGann, A.J., Lineback, P.K., Kern, T.J., and Douglas, D.C., 2016, Improve wildlife species tracking—Implementing an enhanced global positioning system data management system for California condors: U.S. Geological Survey Open-File Report 2016–1030, 46 p., http://dx.doi.org/10.3133/ofr20161030. -
Of S.P. Korolev Rocket and Space Public Corporation Energia for 2013
OF S.P. KOROLEV ROCKET AND SPACE PUBLIC CORPORATION ENERGIA FOR 2013 This Annual Report of S.P. Korolev Rocket and Space Public Corporation Energia (also hereinafter called “OAO RSC Energia”, “RSC Energia”, “the Corporation”) by the 2013 performance is drawn up in accordance with the RF Government Decree No 1214 as of December 31, 2010 “On Improvement of the Procedure for Management of Open Joint-Stock Companies Whose Stock is in Federal Ownership and Federal State Unitary Enterprises” with due regard for the requirements set forth in the Order issued by the RF Federal Financial Markets Service No 11-46/pz-n as of October 4, 2011 “On Approval of the Provision on Information Disclosure of Issuers of Registered Securities”. This Annual Report was preliminarily approved by RSC Energia’s Board of Directors on April 29, 2014. Minutes No10 as of May 6, 2014. Accuracy of the data contained in this Annual Report was confirmed by RSC Energia’s Auditing Committee Report as of April 17, 2014. 2 TABLE OF CONTENTS KEY PERFORMANCE INDICATORS ........................................................................... 6 ON CORPORATION ACTIVITIES ................................................................................. 8 Corporation background ................................................................................................................................8 Corporation structure (its participation in subsidiary and affiliated companies) ...........................................9 Information about purchase and sale contracts for -
Optical Tracking Telemetry and Commanding (TT&C) for Small
SSC99-IIB-4 Optical Tracking Telemetry and Commanding (TT&C) For Small Satellites Michael Enoch [email protected] Sabrina Herrin [email protected] SM&A Systems Solutions Group 1601 Randolph Road, SE Suite 200S Albuquerque, NM 87106 505-842-8990 Lt. Col. Roberta Ewart, DE [email protected] AFRL/DEB 3550 Aberdeen Ave, SE Kirtland AFB, NM 87117-5776 505-853-3692 Dennis Mansell [email protected] Logicon RDA 2600 Yale Blvd, SE Albuquerque, NM 87106 505-842-8911 Abstract This paper presents information on the current state of technology and potential subsystem and operational concepts to allow the use of low power optical communication systems to perform tracking, telemetry and commanding (TT&C) for small satellites. The mantra of 'smaller, faster, better (& cheaper)' has been realized, at least partially, for many aspects of small satellite design, construction and operations. Most small spacecraft systems have become smaller, lighter and more power efficient while offering greater performance. Unfortunately, one area that has not followed this general trend is TT&C. In many ways, this situation takes on greater significance due to the successes in other areas relating to processors, memory and sensor capability. Technology improvements in these areas have increased the capabilities of small satellites to collect, process and store data on-board the satellite to such a point that the ability of the spacecraft to generate data has outpaced its ability to communicate it to the ground. One approach to resolving this situation is to make use of optical communications technology for TT&C. the needs for communications and TT&C.