Algorithms for Incremental Planar Graph Drawing and Two-Page Book Embeddings

Total Page:16

File Type:pdf, Size:1020Kb

Algorithms for Incremental Planar Graph Drawing and Two-Page Book Embeddings Algorithms for Incremental Planar Graph Drawing and Two-page Book Embeddings Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Universit¨at zu Koln¨ vorgelegt von Martin Gronemann aus Unna Koln¨ 2015 Berichterstatter (Gutachter): Prof. Dr. Michael Junger¨ Prof. Dr. Markus Chimani Prof. Dr. Bettina Speckmann Tag der m¨undlichenPr¨ufung: 23. Juni 2015 Zusammenfassung Diese Arbeit besch¨aftigt sich mit zwei Problemen bei denen es um Knoten- ordnungen in planaren Graphen geht. Hierbei werden als erstes Ordnungen betrachtet, die als Grundlage fur¨ inkrementelle Zeichenalgorithmen dienen. Solche Algorithmen erweitern in der Regel eine vorhandene Zeichnung durch schrittweises Hinzufugen¨ von Knoten in der durch die Ordnung gegebene Rei- henfolge. Zu diesem Zweck kommen im Gebiet des Graphenzeichnens verschie- dene Ordnungstypen zum Einsatz. Einigen dieser Ordnungen fehlen allerdings gewunschte¨ oder sogar fur¨ einige Algorithmen notwendige Eigenschaften. Diese Eigenschaften werden genauer untersucht und dabei ein neuer Typ von Ord- nung entwickelt, die sogenannte bitonische st-Ordnung, eine Ordnung, welche Eigenschaften kanonischer Ordnungen mit der Flexibilit¨at herk¨ommlicher st- Ordnungen kombiniert. Die zus¨atzliche Eigenschaft bitonisch zu sein erm¨oglicht es, eine st-Ordnung wie eine kanonische Ordnung zu verwenden. Es wird gezeigt, dass fur¨ jeden zwei-zusammenh¨angenden planaren Graphen eine bitonische st-Ordnung in linearer Zeit berechnet werden kann. Im Ge- gensatz zu kanonischen Ordnungen, k¨onnen st-Ordnungen naturgem¨aß auch fur¨ gerichtete Graphen verwendet werden. Diese F¨ahigkeit ist fur¨ das Zeichnen von aufw¨artsplanaren Graphen von besonderem Interesse, da eine bitonische st-Ordnung unter Umst¨anden es erlauben wurde,¨ vorhandene ungerichtete Zei- chenverfahren fur¨ den gerichteten Fall anzupassen. Basierend auf dieser Beob- achtung wird eine Teilmenge der planaren st-Graphen charakterisiert, fur¨ die eine solche Ordnung existiert. Zus¨atzlich wird ein Linearzeit-Algorithmus vor- gestellt, der diese Graphen erkennt und eine bitonische st-Ordnung berechnet. Fur¨ die ubrigen¨ planaren st-Graphen wird gezeigt, dass mittels Unterteilung spezifischer Kanten eine Instanz augmentiert werden kann, so dass fur¨ diese ei- ne bitonische st-Ordnung existiert. Dabei bestimmt ein Linearzeit-Algorithmus die kleinste Kantenmenge fur¨ den Unterteilungsschritt. Weiterhin wird gezeigt, dass fur¨ einen planaren st-Graphen G = (V, E) diese Menge nicht mehr als |V | − 3 Kanten umfasst und jede Kante h¨ochstens einmal unterteilt werden muss. Dieses Resultat l¨asst sich sofort ubertragen¨ auf die Anzahl der ben¨otigten Knicke in aufw¨artsplanaren Zeichnungen. Es wird ein Algorithmus angegeben, der eine aufw¨artsplanare Zeichnung mit quadratischer Fl¨ache, h¨ochstens |V |−3 Knicken insgesamt und maximal einem Knick pro Kante in linearer Zeit erstellt. Der zweite Teil der Arbeit widmet sich der Einbettung von planaren Graphen mit Maximalgrad drei und vier in Buchern¨ mit zwei Seiten. Neben einem ver- einfachten inkrementellen Linearzeit-Algorithmus fur¨ drei-zusammenh¨angende 3-planare Graphen, wird auch ein Linearzeit-Algorithmus fur¨ den 4-planaren Fall vorgestellt. Abstract Subject of this work are two problems related to ordering the vertices of planar graphs. The first one is concerned with the properties of vertex-orderings that serve as a basis for incremental drawing algorithms. Such a drawing algorithm usually extends a drawing by adding the vertices step-by-step as provided by the ordering. In the field of graph drawing several orderings are in use for this purpose. Some of them, however, lack certain properties that are desirable or required for classic incremental drawing methods. We narrow down these properties, and introduce the bitonic st-ordering, an ordering which combines the features only available when using canonical orderings with the flexibility of st-orderings. The additional property of being bitonic enables an st-ordering to be used in algorithms that usually require a canonical ordering. With this in mind, we describe a linear-time algorithm that computes such an ordering for every biconnected planar graph. Unlike canonical orderings, st- orderings extend to directed graphs, in particular planar st-graphs. Being able to compute bitonic st-orderings for planar st-graphs is of particular interest for upward planar drawing algorithms, since traditional incremental algorithms for undirected planar graphs might be adapted to directed graphs. Based on this observation, we give a full characterization of the class of planar st-graphs that admit such an ordering. This includes a linear-time algorithm for recognition and ordering. Furthermore, we show that by splitting specific edges of an in- stance that is not part of this class, one is able to transform it into one for which then such an ordering exists. To do so, we describe a linear-time algo- rithm for finding the smallest set of edges to split. We show that for a planar st-graph G = (V, E), |V | − 3 edge splits are sufficient and every edge is split at most once. This immediately translates to the number of bends required for upward planar poly-line drawings. More specifically, we show that every planar st-graph admits an upward planar poly-line drawing in quadratic area with at most |V | − 3 bends in total and at most one bend per edge. Moreover, the drawing can be obtained in linear time. The second part is concerned with embedding planar graphs with maximum degree three and four into books. Besides providing a simplified incremental linear-time algorithm for embedding triconnected 3-planar graphs into a book of two pages, we describe a linear-time algorithm to compute a subhamiltonian cycle in a triconnected 4-planar graph. Contents 1 Introduction1 2 Preliminaries5 2.1 Technical foundations.......................5 2.2 Oriented planar drawings of directed graphs........... 12 3 Bitonic st-orderings 25 3.1 Bitonic st-orderings of biconnected planar graphs........ 26 3.1.1 A linear-time algorithm.................. 32 3.1.2 The fixed embedding scenario............... 40 3.2 Straight-line drawings....................... 44 3.2.1 The algorithm of de Fraysseix, Pach and Pollack.... 44 3.2.2 The linear-time variant of Chrobak and Payne..... 47 3.2.3 A drawing algorithm for bitonic st-orderings...... 54 3.3 Bitonic st-orderings of planar st-graphs............. 59 3.3.1 Characterization & recognition.............. 61 3.3.2 Recognition & ordering in linear time.......... 68 3.3.3 Experimental results.................... 69 3.4 Upward planar poly-line drawings with few bends........ 74 3.4.1 The edge-split method................... 76 3.4.2 An optimal linear-time transformation.......... 79 3.4.3 Experimental results.................... 82 3.5 Visibility & contact representations................ 82 3.6 Conclusion............................. 87 4 Two-page Book Embeddings of Bounded Degree Graphs 93 4.1 Two-page book embeddings & subhamiltonicity......... 96 4.2 Two-page book embeddings of 3-planar graphs......... 99 4.3 Subhamiltonicity of triconnected 4-planar graphs........ 103 4.4 Conclusion............................. 114 5 Conclusion 115 1 Introduction Incremental drawing algorithms are a popular concept in the field of graph drawing. Their history goes back to the early beginnings of graph drawing, but even today, incremental approaches remain an important tool. Especially when dealing with problems that are concerned with planar graphs, various methods have been developed to solve these. Most algorithms follow a common principle that is similar to mathematical induction. The first ingredient for an incremental drawing algorithm is an ordering of entities. These entities are usually the vertices, but also other orderings for sets of vertices, edges or faces exist. Once an ordering of the entities is determined, a suitable invariant is described that a partially constructed drawing must comply with. One starts by choosing a base case that is used to create an initial drawing which complies with the invariant. Afterwards, the entities are added step-by-step as provided by the ordering. In each step, one has to ensure that the drawing can be extended while at the same time the invariant is satisfied. Sometimes it is necessary to distinguish the placement of the last entity. Algorithms that follow this abstract pattern have a long tradition, not only in the field of graph drawing. The type of ordering used depends heavily on the problem that has to be solved, and the ordering itself might require a certain type of graph. A well-known example are canonical orderings of which there exist multiple variants, each demanding different structural properties from the input graph. These serve as a basis for a variety of incremental drawing algorithms. In order to compensate for the restrictions imposed by the type of ordering used, one may decompose the graph into components that fulfill the requirements, compute drawings for these components and compose their drawings afterwards. In this thesis we investigate the properties of orderings that are suitable for incremental drawing algorithms in more detail, and propose a new type of or- dering, the bitonic st-ordering. The backstory that eventually led to this idea is as follows. In [5] and [6] we extend existing incremental drawing algorithms that require the input to be triconnected to ones that require only a biconnected graph using a standard decomposition technique that is referred to as SPQR- tree approach. It follows the described principle of decomposing the graph and merging the drawings afterwards. In [6] the input graph is further restricted to have maximum degree of three, the so-called 3-planar graphs, whereas in [5] 1 1 Introduction 1 1 2 2 3 4 8 4 7 3 5 6 6 7 5 1 8 2 (a) (b) Figure 1.1. (a) A planar graph embedded in the plane and (b) a two-page book embedding of the same graph. Edges drawn dashed are assigned to the first page, whereas solid ones are drawn on the second page. a different problem is solved that is concerned with 4-planar graphs. In both cases, the degree restriction is of importance.
Recommended publications
  • Space and Polynomial Time Algorithm for Reachability in Directed Layered Planar Graphs
    Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 16 (2015) An O(n) Space and Polynomial Time Algorithm for Reachability in Directed Layered Planar Graphs Diptarka Chakraborty∗and Raghunath Tewari y Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India April 27, 2015 Abstract Given a graph G and two vertices s and t in it, graph reachability is the problem of checking whether there exists a path from s to t in G. We show that reachability in directed layered planar graphs can be decided in polynomial time and O(n ) space, for any > 0. Thep previous best known space bound for this problem with polynomial time was approximately O( n) space [INP+13]. Deciding graph reachability in SC is an important open question in complexity theory and in this paper we make progress towards resolving this question. 1 Introduction Given a graph and two vertices s and t in it, the problem of determining whether there is a path from s to t in the graph is known as the graph reachability problem. Graph reachability problem is an important question in complexity theory. Particularly in the domain of space bounded computa- tions, the reachability problem in various classes of graphs characterize the complexity of different complexity classes. The reachability problem in directed and undirected graphs, is complete for the classes non-deterministic log-space (NL) and deterministic log-space (L) respectively [LP82, Rei08]. The latter follows due to a famous result by Reingold who showed that undirected reachability is in L [Rei08].
    [Show full text]
  • Confluent Hasse Diagrams
    Confluent Hasse diagrams David Eppstein Joseph A. Simons Department of Computer Science, University of California, Irvine, USA. October 29, 2018 Abstract We show that a transitively reduced digraph has a confluent upward drawing if and only if its reachability relation has order dimension at most two. In this case, we construct a confluent upward drawing with O(n2) features, in an O(n) × O(n) grid in O(n2) time. For the digraphs representing series-parallel partial orders we show how to construct a drawing with O(n) fea- tures in an O(n) × O(n) grid in O(n) time from a series-parallel decomposition of the partial order. Our drawings are optimal in the number of confluent junctions they use. 1 Introduction One of the most important aspects of a graph drawing is that it should be readable: it should convey the structure of the graph in a clear and concise way. Ease of understanding is difficult to quantify, so various proxies for readability have been proposed; one of the most prominent is the number of edge crossings. That is, we should minimize the number of edge crossings in our drawing (a planar drawing, if possible, is ideal), since crossings make drawings harder to read. Another measure of readability is the total amount of ink required by the drawing [1]. This measure can be formulated in terms of Tufte’s “data-ink ratio” [22,35], according to which a large proportion of the ink on any infographic should be devoted to information. Thus given two different ways to present information, we should choose the more succinct and crossing-free presentation.
    [Show full text]
  • Upward Planar Drawing of Single Source Acyclic Digraphs (Extended
    Upward Planar Drawing of Single Source Acyclic Digraphs (Extended Abstract) y z Michael D. Hutton Anna Lubiw UniversityofWaterlo o UniversityofWaterlo o convention, the edges in the diagrams in this pap er Abstract are directed upward unless sp eci cally stated otherwise, An upward plane drawing of a directed acyclic graph is a and direction arrows are omitted unless necessary.The plane drawing of the graph in which each directed edge is digraph on the left is upward planar: an upward plane represented as a curve monotone increasing in the vertical drawing is given. The digraph on the rightisnot direction. Thomassen [14 ] has given a non-algorithmic, upward planar|though it is planar, since placing v graph-theoretic characterization of those directed graphs inside the face f would eliminate crossings, at the with a single source that admit an upward plane drawing. cost of pro ducing a downward edge. Kelly [10] and We present an ecient algorithm to test whether a given single-source acyclic digraph has an upward plane drawing v and, if so, to nd a representation of one suchdrawing. The algorithm decomp oses the graph into biconnected and triconnected comp onents, and de nes conditions for merging the comp onents into an upward plane drawing of the original graph. To handle the triconnected comp onents f we provide a linear algorithm to test whether a given plane drawing admits an upward plane drawing with the same faces and outer face, which also gives a simpler, algorithmic Upward planar Non-upward-planar pro of of Thomassen's result. The entire testing algorithm (for general single-source directed acyclic graphs) op erates 2 in O (n ) time and O (n) space.
    [Show full text]
  • LNCS 7034, Pp
    Confluent Hasse Diagrams DavidEppsteinandJosephA.Simons Department of Computer Science, University of California, Irvine, USA Abstract. We show that a transitively reduced digraph has a confluent upward drawing if and only if its reachability relation has order dimen- sion at most two. In this case, we construct a confluent upward drawing with O(n2)features,inanO(n) × O(n)gridinO(n2)time.Forthe digraphs representing series-parallel partial orders we show how to con- struct a drawing with O(n)featuresinanO(n)×O(n)gridinO(n)time from a series-parallel decomposition of the partial order. Our drawings are optimal in the number of confluent junctions they use. 1 Introduction One of the most important aspects of a graph drawing is that it should be readable: it should convey the structure of the graph in a clear and concise way. Ease of understanding is difficult to quantify, so various proxies for it have been proposed, including the number of crossings and the total amount of ink required by the drawing [1,18]. Thus given two different ways to present information, we should choose the more succinct and crossing-free presentation. Confluent drawing [7,8,9,15,16] is a style of graph drawing in which multiple edges are combined into shared tracks, and two vertices are considered to be adjacent if a smooth path connects them in these tracks (Figure 1). This style was introduced to re- duce crossings, and in many cases it will also Fig. 1. Conventional and confluent improve the ink requirement by represent- drawings of K5,5 ing dense subgraphs concisely.
    [Show full text]
  • Lombardi Drawings of Graphs 1 Introduction
    Lombardi Drawings of Graphs Christian A. Duncan1, David Eppstein2, Michael T. Goodrich2, Stephen G. Kobourov3, and Martin Nollenburg¨ 2 1Department of Computer Science, Louisiana Tech. Univ., Ruston, Louisiana, USA 2Department of Computer Science, University of California, Irvine, California, USA 3Department of Computer Science, University of Arizona, Tucson, Arizona, USA Abstract. We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs. 1 Introduction The American artist Mark Lombardi [24] was famous for his drawings of social net- works representing conspiracy theories. Lombardi used curved arcs to represent edges, leading to a strong aesthetic quality and high readability. Inspired by this work, we intro- duce the notion of a Lombardi drawing of a graph, in which edges are drawn as circular arcs with perfect angular resolution: consecutive edges are evenly spaced around each vertex. While not all vertices have perfect angular resolution in Lombardi’s work, the even spacing of edges around vertices is clearly one of his aesthetic criteria; see Fig. 1. Traditional graph drawing methods rarely guarantee perfect angular resolution, but poor edge distribution can nevertheless lead to unreadable drawings. Additionally, while some tools provide options to draw edges as curves, most rely on straight-line edges, and it is known that maintaining good angular resolution can result in exponential draw- ing area for straight-line drawings of planar graphs [17,25].
    [Show full text]
  • Peter Hoek Thesis
    Visual Encoding Approaches for Temporal Social Networks Peter John Hoek BIT (Distinction) CQU, MSc (IT) UNSW A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Information Technology at the School of Engineering and Information Technology The University of New South Wales at the Australian Defence Force Academy 2013 Abstract Visualisations have become an inseparable part of social network analysis methodologies. However, despite the large amount of work in the field of social network visualisation there are still a number of areas in which current visualisation methods can be improved. The current dynamic network visualisation approaches consisting of aggregation or animated movies suffer from various limitations, such as introducing artefacts that could obscure interesting micro-level patterns or disrupting the users’ internalised mental models. In addition, very few social network tools support the inclusion of semantic and contextual information or provide visual topological representations based on network node attributes. This thesis introduces novel approaches to the visualisation of social networks and assesses their effectiveness through the use of concept demonstrators and prototypes. These are the software artefacts of this thesis, which provide illustrations of complementary visualisation techniques that could be considered for inclusion into social network visualisation and analysis tools. The novel methods for visualising temporal networks introduced in this thesis consist of: i an Attribute-Based
    [Show full text]
  • Local Page Numbers
    Local Page Numbers Bachelor Thesis of Laura Merker At the Department of Informatics Institute of Theoretical Informatics Reviewers: Prof. Dr. Dorothea Wagner Prof. Dr. Peter Sanders Advisor: Dr. Torsten Ueckerdt Time Period: May 22, 2018 – September 21, 2018 KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu Statement of Authorship I hereby declare that this document has been composed by myself and describes my own work, unless otherwise acknowledged in the text. I declare that I have observed the Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis, as amended. Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde, sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben. Karlsruhe, September 21, 2018 iii Abstract A k-local book embedding consists of a linear ordering of the vertices of a graph and a partition of its edges into sets of edges, called pages, such that any two edges on the same page do not cross and every vertex has incident edges on at most k pages. Here, two edges cross if their endpoints alternate in the linear ordering. The local page number pl(G) of a graph G is the minimum k such that there exists a k-local book embedding for G. Given a graph G and a vertex ordering, we prove that it is NP-complete to decide whether there exists a k-local book embedding for G with respect to the given vertex ordering for any fixed k ≥ 3.
    [Show full text]
  • Upward Planar Drawings with Three Slopes
    Upward Planar Drawings with Three and More Slopes Jonathan Klawitter and Johannes Zink Universit¨atW¨urzburg,W¨urzburg,Germany Abstract. We study upward planar straight-line drawings that use only a constant number of slopes. In particular, we are interested in whether a given directed graph with maximum in- and outdegree at most k admits such a drawing with k slopes. We show that this is in general NP-hard to decide for outerplanar graphs (k = 3) and planar graphs (k ≥ 3). On the positive side, for cactus graphs deciding and constructing a drawing can be done in polynomial time. Furthermore, we can determine the minimum number of slopes required for a given tree in linear time and compute the corresponding drawing efficiently. Keywords: upward planar · slope number · NP-hardness 1 Introduction One of the main goals in graph drawing is to generate clear drawings. For visualizations of directed graphs (or digraphs for short) that model hierarchical relations, this could mean that we explicitly represent edge directions by letting each edge point upward. We may also require a planar drawing and, if possible, we would thus get an upward planar drawing. For schematic drawings, we try to keep the visual complexity low, for example by using only few different geometric primitives [28] { in our case few slopes for edges. If we allow two different slopes we get orthogonal drawings [14], with three or four slopes we get hexalinear and octilinear drawings [36], respectively. Here, we combine these requirements and study upward planar straight-line drawings that use only few slopes.
    [Show full text]
  • Arxiv:1608.08161V2 [Cs.CG] 1 Sep 2016 Heuristics and Provide No Guarantee on the Quality of the Result
    The Bundled Crossing Number Md. Jawaherul Alam1, Martin Fink2, and Sergey Pupyrev3;4 1 Department of Computer Science, University of California, Irvine 2 Department of Computer Science, University of California, Santa Barbara 3 Department of Computer Science, University of Arizona, Tucson 4 Institute of Mathematics and Computer Science, Ural Federal University Abstract. We study the algorithmic aspect of edge bundling. A bundled crossing in a drawing of a graph is a group of crossings between two sets of parallel edges. The bundled crossing number is the minimum number of bundled crossings that group all crossings in a drawing of the graph. We show that the bundled crossing number is closely related to the orientable genus of the graph. If multiple crossings and self-intersections of edges are allowed, the two values are identical; otherwise, the bundled crossing number can be higher than the genus. We then investigate the problem of minimizing the number of bundled crossings. For circular graph layouts with a fixed order of vertices, we present a constant-factor approximation algorithm. When the circular 6c order is not prescribed, we get a c−2 -approximation for a graph with n vertices having at least cn edges for c > 2. For general graph layouts, 6c we develop an algorithm with an approximation factor of c−3 for graphs with at least cn edges for c > 3. 1 Introduction For many real-world networks with substantial numbers of links between objects, traditional graph drawing algorithms produce visually cluttered and confusing drawings. Reducing the number of edge crossings is one way to improve the quality of the drawings.
    [Show full text]
  • On Layered Drawings of Planar Graphs
    On Layered Drawings of Planar Graphs Bachelor Thesis of Sarah Lutteropp At the Department of Informatics Institute of Theoretical Computer Science Reviewers: Prof. Dr. Maria Axenovich Prof. Dr. Dorothea Wagner Advisors: Dipl.-Inform. Thomas Bläsius Dr. Tamara Mchedlidze Dr. Torsten Ueckerdt Time Period: 28th January 2014 – 28th May 2014 KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu Acknowledgements I would like to thank my advisors Thomas Bläsius, Dr. Tamara Mchedlidze and Dr. Torsten Ueckerdt for their great support in form of many hours of discussion, useful ideas and extensive commenting on iterative versions. It was not trivial to find a topic and place for a combined mathematics and computer science thesis and I am grateful to Prof. Dr. Dorothea Wagner, who allowed me to write my thesis at her institute. I would also like to thank Prof. Dr. Dorothea Wagner and Prof. Dr. Maria Axenovich for grading my thesis. Last but not least, I would like to thank all my proofreaders (supervisors included) for giving last-minute comments on my thesis. Statement of Authorship I hereby declare that this document has been composed by myself and describes my own work, unless otherwise acknowledged in the text. Karlsruhe, 28th May 2014 iii Abstract A graph is k-level planar if it admits a planar drawing in which each vertex is mapped to one of k horizontal parallel lines and the edges are drawn as non-crossing y-monotone line segments between these lines. It is not known whether the decision problem of a graph being k-level planar is solvable in polynomial time complexity (in P) or not.
    [Show full text]
  • 55 GRAPH DRAWING Emilio Di Giacomo, Giuseppe Liotta, Roberto Tamassia
    55 GRAPH DRAWING Emilio Di Giacomo, Giuseppe Liotta, Roberto Tamassia INTRODUCTION Graph drawing addresses the problem of constructing geometric representations of graphs, and has important applications to key computer technologies such as soft- ware engineering, database systems, visual interfaces, and computer-aided design. Research on graph drawing has been conducted within several diverse areas, includ- ing discrete mathematics (topological graph theory, geometric graph theory, order theory), algorithmics (graph algorithms, data structures, computational geometry, vlsi), and human-computer interaction (visual languages, graphical user interfaces, information visualization). This chapter overviews aspects of graph drawing that are especially relevant to computational geometry. Basic definitions on drawings and their properties are given in Section 55.1. Bounds on geometric and topological properties of drawings (e.g., area and crossings) are presented in Section 55.2. Sec- tion 55.3 deals with the time complexity of fundamental graph drawing problems. An example of a drawing algorithm is given in Section 55.4. Techniques for drawing general graphs are surveyed in Section 55.5. 55.1 DRAWINGS AND THEIR PROPERTIES TYPES OF GRAPHS First, we define some terminology on graphs pertinent to graph drawing. Through- out this chapter let n and m be the number of graph vertices and edges respectively, and d the maximum vertex degree (i.e., number of edges incident to a vertex). GLOSSARY Degree-k graph: Graph with maximum degree d k. ≤ Digraph: Directed graph, i.e., graph with directed edges. Acyclic digraph: Digraph without directed cycles. Transitive edge: Edge (u, v) of a digraph is transitive if there is a directed path from u to v not containing edge (u, v).
    [Show full text]
  • A Survey on Graph Drawing Beyond Planarity
    A Survey on Graph Drawing Beyond Planarity Walter Didimo1, Giuseppe Liotta1, Fabrizio Montecchiani1 1Dipartimento di Ingegneria, Universit`adegli Studi di Perugia, Italy fwalter.didimo,giuseppe.liotta,[email protected] Abstract Graph Drawing Beyond Planarity is a rapidly growing research area that classifies and studies geometric representations of non-planar graphs in terms of forbidden crossing configurations. Aim of this survey is to describe the main research directions in this area, the most prominent known results, and some of the most challenging open problems. 1 Introduction In the mid 1980s, the early pioneers of graph drawing had the intuition that a drawing with too many edge crossings is harder to read than a drawing of the same graph with fewer edge crossings (see, e.g., [35, 36, 72, 190]). This intuition was later confirmed by a series of cognitive experimental studies (see, e.g., [180, 181, 203]). As a result, a large part of the existing literature on graph drawing showcases elegant algorithms and sophisticated data structures under the assumption that the input graph is planar, i.e., it admits a drawing without edge crossings. When the input graph is non-planar, crossing minimization heuristics are used to insert a small number of dummy vertices in correspondence of the edge crossings, so to obtain a planarization of the input graph. A crossing-free drawing of the planarization can be computed by using one of the algorithms for planar graphs and then the crossings are reinserted by removing the dummy vertices. This approach is commonly adopted and works well for graphs of relatively small size, up to a few hundred vertices and edges (see, e.g., [87, 152]).
    [Show full text]