Review Blackwell Publishing Ltd Tansley review Arsenic uptake and metabolism in plants Author for correspondence: F. J . Z h a o 1, J. F. Ma2, A. A. Meharg3 and S. P. McGrath1 F. J. Zhao 1Soil Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; 2Research Tel: +44 1582 763133 Fax: +44 1582 469036 Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan; 3School of Email:
[email protected] Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 Received: 12 September 2008 3UU, UK Accepted: 3 November 2008 Contents Summary 777 V. Long-distance translocation of arsenic 786 I. Introduction 777 VI. Arsenic hyperaccumulation 788 II. Mechanisms of arsenic uptake and efflux 778 VII. Conclusions 788 III. Rhizosphere interactions 782 Acknowledgements 789 References 789 IV. Arsenic metabolism in planta 783 Summary New Phytologist (2009) 181: 777–794 Arsenic (As) is an element that is nonessential for and toxic to plants. Arsenic doi: 10.1111/j.1469-8137.2008.02716.x contamination in the environment occurs in many regions, and, depending on envir- onmental factors, its accumulation in food crops may pose a health risk to humans. Recent progress in understanding the mechanisms of As uptake and metabolism in Key words: arsenate, arsenate reduction, arsenic methylation, arsenite, plants is reviewed here. Arsenate is taken up by phosphate transporters. A number hyperaccumulation, tolerance. of the aquaporin nodulin26-like intrinsic proteins (NIPs) are able to transport arsenite, the predominant form of As in reducing environments. In rice (Oryza sativa), arsenite uptake shares the highly efficient silicon (Si) pathway of entry to root cells and efflux towards the xylem.