An Eulerian Path Approach to Global Multiple Alignment for DNA

Total Page:16

File Type:pdf, Size:1020Kb

An Eulerian Path Approach to Global Multiple Alignment for DNA JOURNAL OFCOMPUTATIONAL BIOLOGY Volume10, Number 6,2003 ©MaryAnn Liebert,Inc. Pp. 803–819 AnEulerian Path Approach to Global Multiple Alignment for DNASequences YU ZHANG1 andMICHAEL S.WATERMAN 2 ABSTRACT With the rapid increase in the datasetof genomesequences, the multiple sequence alignment problemis increasingly importantand frequently involves the alignmentof alargenumber ofsequences. Manyheuristic algorithmshave been proposedto improve the speed ofcom- putationand the qualityof alignment. W eintroduce anovelapproach that is fundamentally different fromall currently availablemethods. Our motivationcomes from the Eulerian methodfor fragment assembly in DNAsequencing thattransforms all DNAfragments into ade Bruijn graphand then reduces sequence assembly toa Eulerian pathproblem. The paperfocuses onglobal multiple alignmentof DNA sequences, whereentire sequences are aligned into onecon guration. Our mainresult is analgorithm with almostlinear compu- tationalspeed with respect tothe totalsize (numberof letters) ofsequences tobe aligned. Fivehundred simulated sequences (averaging500 bases per sequence andas lowas 70% pairwise identity) havebeen aligned within three minutes onapersonal computer,andthe quality ofalignment is satisfactory.As aresult, accurateand simultaneous alignmentof thousandsof long sequences within areasonableamount of time becomespossible. Data froman Arabidopsis sequencing projectis used todemonstrate the performance. Key words: multiple sequencealignment, de Bruijn graph,Eulerian path. 1.INTRODUCTION ultiplesequence alignment is routinely used to ndconserved regions in molecular se- Mquences.When a setof relatedsequences is aligned by multiple sequence alignment algorithms, the hiddencommonalities among sequences are revealed. Thus they provide a criticalcomputational tool to retrievehidden information among huge and exponentially growing genetic data. Amathematicallyoptimal solution of the multiple sequence alignment problem is achieved by using a dynamicprogramming algorithm (Sankoff, 1975; W aterman et al.,1976).Because the time and memory costof thedynamic programming algorithm is exponentialto thenumber of sequences,i.e., 2.LN / where L sequencelength and N numberof sequences, it is impossible to put this method into practical D D 1Departmentof Mathematics,University of SouthernCalifornia, 1042 W .36thPlace (DRB 289),Los Angeles, CA 90089-1113. 2Departmentof Biological Sciences, University of Southern California, Los Angeles, CA 90089-1340. 803 804 ZHANG AND WATERMAN useexcept on a smallset of sequences (see Kececioglu[1993] for extensionsof this approach). Many heuristicalgorithms achieve reasonably good solutions with limited time and memory usage, and some of themhave already been popularly used in modern molecular biology research. Mostcurrently available algorithms are in one of two classes. The rst classis those algorithms using theprogressive alignment strategy (W atermanand Perlwitz, 1984; Feng and Doolittle, 1987). A multiple alignmentis gradually built up by aligning the closest pair of sequences rst andthen aligning the next closestpair of sequences, or onesequence with a setof alignedsequences or twosets of alignedsequences. Thisprocedure is repeated until all given sequences are aligned together .Thekey idea is that the pair of sequenceswith minimum distance is mostlikely to having been obtained from themost recent evolutionary divergenceand that the pairwise alignment of these two speci c sequencesprovides the most “ reliable” informationthat can be extracted. Many programs based on this method exist. Some of themconstruct an alignmentthroughout the entire length of sequences,such as MULTAL(Taylor,1988), AMUL T(Bartonand Sternberg,1987a, 1987b), MSA (Lipman et al.,1989),CLUST ALW (Higginsand Sharp, 1989; Thompson et al.,1994).Other programs try rst toidentify an ordered series of highly conserved regions, then proceedto alignthe intervening regions, such as GENALIGN (Martinez,1988) and ASSEMBLE (Vingron andArgos, 1991). Among these progressive alignment methods, CLUST ALW,probablythe best-known andmost popular program used currently, builds a guidetree from thepairwise alignment scores and mergessubsets of sequences according to the tree. A recentalgorithm T -Coffee(Notredame et al., 2000) issimilar to CLUST ALWbutuses a consistencymeasure that may reduce the potential errors causedby progressivealignment. Theother class of alignmentalgorithms uses iterative re nement strategies to improvean initialalignment (Sankoff et al.,1976;Sankoff and Kruskal, 1983). The basic idea for iterativemethods is to re ne the initialalignment iteratively by local optimization. In HMMT (Eddy, 1995), e.g., the model parameters arereestimated at each iteration. Iteration continues until convergence or reaching the maximal user- dened number of iterations. Currently available programs that apply iterative strategies include DIALIGN (Morgenstein et al.,1996),which uses a localalignment approach to construct multiple alignments based onsegment– segment comparisons, where the segments are incorporated into a multiplealignment by an iterativeprocess. The PRRP program (Gotoh, 1996) optimizes an alignment by iteratively dividing the sequencesinto two groups and then realigning them using a globalgroup-to-group alignment algorithm. SAGA (Notredameand Higgins, 1996) uses a geneticalgorithm to select from anevolving population thealignment which optimizes an objective function (OF). AnOF namedCOFFEE (Notredameet al., 1998)is used in SAGA thatmeasures the consistency between the multiple alignment and a libraryof CLUSTALWpairwisealignments. HMMT (Eddy, 1995) and SAM (Hugheyand Krogh, 1996) apply a stochasticiterative strategy that maximizes the probability based on a hiddenMarkov model (HMM), but theyare often used to re ne prealigned sequences (Notredame, 2002). Thenumerous alignment programs mentioned above have their own advantages and drawbacks. However, thereare some common issues for allof thecurrently available alignment algorithms: 1) robustness under certainconditions, such as gap-richregions, repeat-rich regions, etc.; 2) local optima problems, especially for iterativemethods; 3) timeef ciency and memory usage. The time cost for allcurrent algorithms is at bestproportional to the square of the number of sequences to be aligned. Althoughmany heuristic algorithms have been applied to alleviatethe huge time and memory expenses, thosecosts remain a barrierfor practicalapplication when confronted with thousands of inputsequences, or millionsof letters in each sequence, which are not unusual numbers even in bacterial genomes. Certainly, handlinghundreds of sequences with lengths in the thousands is a worthygoal. 2.MOTIV ATION Thispaper presents a novelapproach to the global multiple DNA sequencealignment problem using Eulerianpaths. W ecallthe method “ EulerAlign.”Themost signi cant advantages of EulerAlign are its lineartime and memory cost with respect to the total size of sequences to be aligned and improved alignmentaccuracy. Our motivationcomes from thealgorithm for fragmentassembly in DNA sequencingusing the Eulerian superpathapproach (EULER) (Iduryand W aterman,1995; Pevzner et al.,2001).In that algorithm, a ANEULERIAN PATHAPPROACH 805 FIG. 1. Anextreme version of fragment assembly is multiple sequence alignment. fragmentassembly problem is rst reducedto aneasy-to-solve Eulerian path problem in thede Bruijngraph, andan Eulerian path is found that corresponds to the consensus sequence of the genome. A signicant contributionof theEulerian approach is that it discards the traditional “ overlap-layout-consensus”outline. Inanother words, it obtainsa consensussequence before knowing an alignment and without doing pairwise alignments. Aglobalmultiple alignment problem is in fact an extreme version of the fragment assembly problem. As shownin Fig.1, ifalmost all fragments come from thesame region of agenome,then EULER should outputa consensussequence of that region. For multiplesequence alignment, if thisconsensus sequence isthe closest one to all given sequences, one would expect to achieve an accurate alignment using a consensusscoring scheme. Notethat the idea is similar to the star method: given N sequencesto be aligned, the star method rst computesthe alignments of all sequence pairs and picks one sequence among N sequencesas the consensusthat is closestto all other sequences. EulerAlign attempts to ndsucha consensusthat consists offragmentsof the N sequencessuch that the conserved regions are ampli ed and noise is suppressed. To understandthis, assume all input sequences are derived from acommonancestral sequence; then EulerAlign isused to ndthis ancestral sequence. By comparing each sequence with the ancestral, it will be able to distinguishbetween conserved letters and mutations. Consequently, the global multiple alignment will be unambiguouslyconstructed. Acrucialrequirement of EULER is the almost “ error-free”data that is obtained by an error-correction procedure.In addition, EULER doesn’ t evaluatethe quality of its consensus path until the nalquality assessmentstage. For themultiple alignment problem, however, people are more interested in aligning distantlyrelated sequences, and for EulerAlign,the consensus sequence obtained must be “accurate.”One optionis to doerror-correctionaggressively so all“ errors”(differences between sequences) are eliminated, butthis is not likely to succeed when aligning distantly related sequences. Instead, EulerAlign applies a somewhatdifferent procedure than does
Recommended publications
  • Tutorial 13 Travelling Salesman Problem1
    MTAT.03.286: Design and Analysis of Algorithms University of Tartu Tutorial 13 Instructor: Vitaly Skachek; Assistants: Behzad Abdolmaleki, Oliver-Matis Lill, Eldho Thomas. Travelling Salesman Problem1 Basic algorithm Definition 1 A Hamiltonian cycle in a graph is a simple circuit that passes through each vertex exactly once. + Problem. Let G(V; E) be a complete undirected graph, and c : E 7! R be a cost function defined on the edges. Find a minimum cost Hamiltonian cycle in G. This problem is called a travelling salesman problem. To illustrate the motivation, imagine that a salesman has a list of towns it should visit (and at the end to return to his home city), and a map, where there is a certain distance between any two towns. The salesman wants to minimize the total distance traveled. Definition 2 We say that the cost function defined on the edges satisfies a triangle inequality if for any three edges fu; vg, fu; wg and fv; wg in E it holds: c (fu; vg) + c (fv; wg) ≥ c (fu; wg) : In what follows we assume that the cost function c satisfies the triangle inequality. The main idea of the algorithm: Observe that removing an edge from the optimal travelling salesman tour leaves a path through all vertices, which contains a spanning tree. We have the following relations: cost(TSP) ≥ cost(Hamiltonian path without an edge) ≥ cost(MST) : 1Additional reading: Section 3 in the book of V.V. Vazirani \Approximation Algorithms". 1 Next, we describe how to build a travelling salesman path. Find a minimum spanning tree in the graph.
    [Show full text]
  • Lecture 9. Basic Problems of Graph Theory
    Lecture 9. Basic Problems of Graph Theory. 1 / 28 Problem of the Seven Bridges of Königsberg Denition An Eulerian path in a multigraph G is a path which contains each edge of G exactly once. If the Eulerian path is closed, then it is called an Euler cycle. If a multigraph contains an Euler cycle, then is called a Eulerian graph. Example Consider graphs z z z y y y w w w t t x x t x a) b) c) in case a the multigraph has an Eulerian cycle, in case b the multigraph has an Eulerian trail, in case c the multigraph hasn't an Eulerian cycle or an Eulerian trail. 2 / 28 Problem of the Seven Bridges of Königsberg In Königsberg, there are two islands A and B on the river Pregola. They are connected each other and with shores C and D by seven bridges. You must set o from any part of the city land: A; B; C or D, go through each of the bridges exactly once and return to the starting point. In 1736 this problem had been solved by the Swiss mathematician Leonhard Euler (1707-1783). He built a graph representing this problem. Shore C River Island A Island B Shore D Leonard Euler answered the important question for citizens "has the resulting graph a closed walk, which contains all edges only once?" Of course the answer was negative. 3 / 28 Problem of the Seven Bridges of Königsberg Theorem Let G be a connected multigraph. G is Eulerian if and only if each vertex of G has even degree.
    [Show full text]
  • 582670 Algorithms for Bioinformatics
    582670 Algorithms for Bioinformatics Lecture 5: Graph Algorithms and DNA Sequencing 27.9.2012 Adapted from slides by Veli M¨akinen/ Algorithms for Bioinformatics 2011 which are partly from http://bix.ucsd.edu/bioalgorithms/slides.php DNA Sequencing: History Sanger method (1977): Gilbert method (1977): I Labeled ddNTPs terminate I Chemical method to cleave DNA copying at random DNA at specific points (G, points. G+A, T+C, C). I Both methods generate labeled fragments of varying lengths that are further measured by electrophoresis. Sanger Method: Generating a Read 1. Divide sample into four. 2. Each sample will have available all normal nucleotides and modified nucleotides of one type (A, C, G or T) that will terminate DNA strand elongation. 3. Start at primer (restriction site). 4. Grow DNA chain. 5. In each sample the reaction will stop at all points ending with the modified nucleotide. 6. Separate products by length using gel electrophoresis. Sanger Method: Generating a Read DNA Sequencing I Shear DNA into millions of small fragments. I Read 500-700 nucleotides at a time from the small fragments (Sanger method) Fragment Assembly I Computational Challenge: assemble individual short fragments (reads) into a single genomic sequence (\superstring") I Until late 1990s the shotgun fragment assembly of human genome was viewed as intractable problem I Now there exists \complete" sequences of human genomes of several individuals I For small and \easy" genomes, such as bacterial genomes, fragment assembly is tractable with many software tools I Remains
    [Show full text]
  • Graph Algorithms in Bioinformatics an Introduction to Bioinformatics Algorithms Outline
    An Introduction to Bioinformatics Algorithms www.bioalgorithms.info Graph Algorithms in Bioinformatics An Introduction to Bioinformatics Algorithms www.bioalgorithms.info Outline 1. Introduction to Graph Theory 2. The Hamiltonian & Eulerian Cycle Problems 3. Basic Biological Applications of Graph Theory 4. DNA Sequencing 5. Shortest Superstring & Traveling Salesman Problems 6. Sequencing by Hybridization 7. Fragment Assembly & Repeats in DNA 8. Fragment Assembly Algorithms An Introduction to Bioinformatics Algorithms www.bioalgorithms.info Section 1: Introduction to Graph Theory An Introduction to Bioinformatics Algorithms www.bioalgorithms.info Knight Tours • Knight Tour Problem: Given an 8 x 8 chessboard, is it possible to find a path for a knight that visits every square exactly once and returns to its starting square? • Note: In chess, a knight may move only by jumping two spaces in one direction, followed by a jump one space in a perpendicular direction. http://www.chess-poster.com/english/laws_of_chess.htm An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 9th Century: Knight Tours Discovered An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 18th Century: N x N Knight Tour Problem • 1759: Berlin Academy of Sciences proposes a 4000 francs prize for the solution of the more general problem of finding a knight tour on an N x N chessboard. • 1766: The problem is solved by Leonhard Euler (pronounced “Oiler”). • The prize was never awarded since Euler was Director of Mathematics at Berlin Academy and was deemed ineligible. Leonhard Euler http://commons.wikimedia.org/wiki/File:Leonhard_Euler_by_Handmann.png An Introduction to Bioinformatics Algorithms www.bioalgorithms.info Introduction to Graph Theory • A graph is a collection (V, E) of two sets: • V is simply a set of objects, which we call the vertices of G.
    [Show full text]
  • On Hamiltonian Line-Graphsq
    ON HAMILTONIANLINE-GRAPHSQ BY GARY CHARTRAND Introduction. The line-graph L(G) of a nonempty graph G is the graph whose point set can be put in one-to-one correspondence with the line set of G in such a way that two points of L(G) are adjacent if and only if the corresponding lines of G are adjacent. In this paper graphs whose line-graphs are eulerian or hamiltonian are investigated and characterizations of these graphs are given. Furthermore, neces- sary and sufficient conditions are presented for iterated line-graphs to be eulerian or hamiltonian. It is shown that for any connected graph G which is not a path, there exists an iterated line-graph of G which is hamiltonian. Some elementary results on line-graphs. In the course of the article, it will be necessary to refer to several basic facts concerning line-graphs. In this section these results are presented. All the proofs are straightforward and are therefore omitted. In addition a few definitions are given. If x is a Une of a graph G joining the points u and v, written x=uv, then we define the degree of x by deg zz+deg v—2. We note that if w ' the point of L(G) which corresponds to the line x, then the degree of w in L(G) equals the degree of x in G. A point or line is called odd or even depending on whether it has odd or even degree. If G is a connected graph having at least one line, then L(G) is also a connected graph.
    [Show full text]
  • Path Finding in Graphs
    Path Finding in Graphs Problem Set #2 will be posted by tonight 1 From Last Time Two graphs representing 5-mers from the sequence "GACGGCGGCGCACGGCGCAA" Hamiltonian Path: Eulerian Path: Each k-mer is a vertex. Find a path that Each k-mer is an edge. Find a path that passes through every vertex of this graph passes through every edge of this graph exactly once. exactly once. 2 De Bruijn's Problem Nicolaas de Bruijn Minimal Superstring Problem: (1918-2012) k Find the shortest sequence that contains all |Σ| strings of length k from the alphabet Σ as a substring. Example: All strings of length 3 from the alphabet {'0','1'}. A dutch mathematician noted for his many contributions in the fields of graph theory, number theory, combinatorics and logic. He solved this problem by mapping it to a graph. Note, this particular problem leads to cyclic sequence. 3 De Bruijn's Graphs Minimal Superstrings can be constructed by finding a Or, equivalently, a Eulerian cycle of a Hamiltonian path of an k-dimensional De Bruijn (k−1)-dimensional De Bruijn graph. Here edges k graph. Defined as a graph with |Σ| nodes and edges represent the k-length substrings. from nodes whose k − 1 suffix matches a node's k − 1 prefix 4 Solving Graph Problems on a Computer Graph Representations An example graph: An Adjacency Matrix: Adjacency Lists: A B C D E Edge = [(0,1), (0,4), (1,2), (1,3), A 0 1 0 0 1 (2,0), B 0 0 1 1 0 (3,0), C 1 0 0 0 0 (4,1), (4,2), (4,3)] D 1 0 0 0 0 An array or list of vertex pairs (i,j) E 0 1 1 1 0 indicating an edge from the ith vertex to the jth vertex.
    [Show full text]
  • Eulerian and Hamiltonian Paths
    Eulerian and Hamiltonian Paths 1. Euler paths and circuits 1.1. The Könisberg Bridge Problem Könisberg was a town in Prussia, divided in four land regions by the river Pregel. The regions were connected with seven bridges as shown in figure 1(a). The problem is to find a tour through the town that crosses each bridge exactly once. Leonhard Euler gave a formal solution for the problem and –as it is believed- established the graph theory field in mathematics. (a) (b) Figure 1: The bridges of Könisberg (a) and corresponding graph (b) 1.2. Defining Euler paths Obviously, the problem is equivalent with that of finding a path in the graph of figure 1(b) such that it crosses each edge exactly one time. Instead of an exhaustive search of every path, Euler found out a very simple criterion for checking the existence of such paths in a graph. As a result, paths with this property took his name. Definition 1: An Euler path is a path that crosses each edge of the graph exactly once. If the path is closed, we have an Euler circuit. In order to proceed to Euler’s theorem for checking the existence of Euler paths, we define the notion of a vertex’s degree. Definition 2: The degree of a vertex u in a graph equals to the number of edges attached to vertex u. A loop contributes 2 to its vertex’s degree. 1.3. Checking the existence of an Euler path The existence of an Euler path in a graph is directly related to the degrees of the graph’s vertices.
    [Show full text]
  • Combinatorics
    Combinatorics Introduction to graph theory Misha Lavrov ARML Practice 11/03/2013 Warm-up 1. How many (unordered) poker hands contain 3 or more aces? 2. 10-digit ISBN codes end in a \check digit": a number 0{9 or the letter X, calculated from the other 9 digits. If a typo is made in a single digit of the code, this can be detected by checking this calculation. Prove that a check digit in the range 1{9 couldn't achieve this goal. 16 3. There are 8 ways to go from (0; 0) to (8; 8) in steps of (0; +1) or (+1; 0). (Do you remember why?) How many of these paths avoid (2; 2), (4; 4), and (6; 6)? You don't have to simplify the expression you get. Warm-up Solutions 4 48 4 48 1. There are 3 · 2 hands with 3 aces, and 4 · 1 hands with 4 aces, for a total of 4560. 2. There are 109 possible ISBN codes (9 digits, which uniquely determine the check digit). If the last digit were in the range 1{9, there would be 9 · 108 possibilities for the last 9 digits. By pigeonhole, two ISBN codes would agree on the last 9 digits, so they'd only differ in the first digit, and an error in that digit couldn't be detected. 3. We use the inclusion-exclusion principle. (Note that there are, 4 12 e.g., 2 · 6 paths from (0; 0) to (8; 8) through (2; 2).) This gives us 16 412 82 428 44 − 2 − + 3 − = 3146: 8 2 6 4 2 4 2 Graphs Definitions A graph is a set of vertices, some of which are joined by edges.
    [Show full text]
  • Graph Theory to Gain a Deeper Understanding of What’S Going On
    Graphs Graphs and trees come up everywhere. I We can view the internet as a graph (in many ways) I who is connected to whom I Web search views web pages as a graph I Who points to whom I Niche graphs (Ecology): I The vertices are species I Two vertices are connected by an edge if they compete (use the same food resources, etc.) Niche graphs describe competitiveness. I Influence Graphs I The vertices are people I There is an edge from a to b if a influences b Influence graphs give a visual representation of power structure. I Social networks: who knows whom There are lots of other examples in all fields . By viewing a situation as a graph, we can apply general results of graph theory to gain a deeper understanding of what's going on. We're going to prove some of those general results. But first we need some notation . Directed and Undirected Graphs A graph G is a pair (V ; E), where V is a set of vertices or nodes and E is a set of edges I We sometimes write G(V ; E) instead of G I We sometimes write V (G) and E(G) to denote the vertices/edges of G. In a directed graph (digraph), the edges are ordered pairs (u; v) 2 V × V : I the edge goes from node u to node v In an undirected simple graphs, the edges are sets fu; vg consisting of two nodes. I there's no direction in the edge from u to v I More general (non-simple) undirected graphs (sometimes called multigraphs) allow self-loops and multiple edges between two nodes.
    [Show full text]
  • Multi-Eulerian Tours of Directed Graphs
    Multi-Eulerian tours of directed graphs Matthew Farrell Lionel Levine∗ Department of Mathematics Cornell University Ithaca, New York, U.S.A. [email protected] http://www.math.cornell.edu/~levine Submitted: 24 September 2015. Revised 4 April 2016; Accepted: ; Published: XX Mathematics Subject Classifications: 05C05, 05C20, 05C30, 05C45, 05C50 Abstract Not every graph has an Eulerian tour. But every finite, strongly connected graph has a multi-Eulerian tour, which we define as a closed path that uses each directed edge at least once, and uses edges e and f the same number of times whenever tail(e) = tail(f). This definition leads to a simple generalization of the BEST Theorem. We then show that the minimal length of a multi-Eulerian tour is bounded in terms of the Pham index, a measure of `Eulerianness'. Keywords: BEST theorem, coEulerian digraph, Eulerian digraph, Eulerian path, Laplacian, Markov chain tree theorem, matrix-tree theorem, oriented spanning tree, period vector, Pham index, rotor walk In the following G = (V; E) denotes a finite directed graph, with loops and multiple edges permitted. An Eulerian tour of G is a closed path that traverses each directed edge exactly once. Such a tour exists only if the indegree of each vertex equals its outdegree; the graphs with this property are called Eulerian. The BEST theorem (named for its discoverers: de Bruijn, Ehrenfest [4], Smith and Tutte [12]) counts the number of such tours. The purpose of this note is to generalize the notion of Eulerian tour and the BEST theorem to any finite, strongly connected graph G.
    [Show full text]
  • Lecture Notes for IEOR 266: Graph Algorithms and Network Flows
    Lecture Notes for IEOR 266: Graph Algorithms and Network Flows Professor Dorit S. Hochbaum Contents 1 Introduction 1 1.1 Assignment problem . 1 1.2 Basic graph definitions . 2 2 Totally unimodular matrices 4 3 Minimum cost network flow problem 5 3.1 Transportation problem . 7 3.2 The maximum flow problem . 8 3.3 The shortest path problem . 8 3.4 The single source shortest paths . 9 3.5 The bipartite matching problem . 9 3.6 Summary of classes of network flow problems . 11 3.7 Negative cost cycles in graphs . 11 4 Other network problems 12 4.1 Eulerian tour . 12 4.1.1 Eulerian walk . 14 4.2 Chinese postman problem . 14 4.2.1 Undirected chinese postman problem . 14 4.2.2 Directed chinese postman problem . 14 4.2.3 Mixed chinese postman problem . 14 4.3 Hamiltonian tour problem . 14 4.4 Traveling salesman problem (TSP) . 14 4.5 Vertex packing problems (Independent Set) . 15 4.6 Maximum clique problem . 15 4.7 Vertex cover problem . 15 4.8 Edge cover problem . 16 4.9 b-factor (b-matching) problem . 16 4.10 Graph colorability problem . 16 4.11 Minimum spanning tree problem . 17 5 Complexity analysis 17 5.1 Measuring quality of an algorithm . 17 5.1.1 Examples . 18 5.2 Growth of functions . 20 i IEOR266 notes: Updated 2014 ii 5.3 Definitions for asymptotic comparisons of functions . 21 5.4 Properties of asymptotic notation . 21 5.5 Caveats of complexity analysis . 21 5.6 A sketch of the ellipsoid method . 22 6 Graph representations 23 6.1 Node-arc adjacency matrix .
    [Show full text]
  • Application of Graph Theory to Biological Problems
    STUDIA UBB CHEMIA, LXI, 1, 2016 (p. 9-16) (RECOMMENDED CITATION) Dedicated to Professor Mircea Diudea on the Occasion of His 65th Anniversary APPLICATION OF GRAPH THEORY TO BIOLOGICAL PROBLEMS NAFISEH JAFARZADEHa AND ALI IRANMANESHa,* ABSTRACT. In this paper, we investigate application of graph theory to some biological problems, specially reconstructing strings based on information about their substrings and sequence comparison by using overlap graphs and also weighted directed graph. Keywords: Fragment assembly, Overlap graphs, sequence comparison, Alignment-free method, Weighted directed graph. INTRODUCTION Since the helical structure of DNA was proposed, many problems about this structure are posed. One of the important problems is how to read and recognize primary structure of a DNA sequence. DNA fragment assembly is a newly explored method of determining whether or not a reassembled strand of DNA, matches the original strand. One particular way to perform this method is by using concepts from graph theory. For instance see [1-4]. In order to begin the graph theoretical phase, one needs a directed graph which is built from some k-long oligonucleotides. Fragment assembly is the reconstructing of a string by using a subset of its substrings. In this method, a given piece of DNA (or rather many identical copies of it) is broken into several smaller fragments. The goal is to reconstruct the original DNA string based on the fragments. Therefore we have the following problem: Given a multiset of fragments, construct the best string that contains each a Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O. Box: 14115-137, Tehran, Iran * Corresponding Author: [email protected] NAFISEH JAFARZADEH, ALI IRANMANESH of the strings in the multiset.
    [Show full text]