Nucella Ostrina Class: Gastropoda, Caenogastropoda

Total Page:16

File Type:pdf, Size:1020Kb

Nucella Ostrina Class: Gastropoda, Caenogastropoda Phylum: Mollusca Class: Gastropoda, Caenogastropoda Nucella ostrina Order: Neogastropoda The rock-dwelling Family: Muricoidea, Muricidae, Ocenebrinae emarginated dogwinkle Taxonomy: Nucella was previously called Anterior (Siphonal) Canal: Short: less Thais. Thais is now reserved for subtropical than 1/4 aperture length: species ostrina and tropical species. For a more detailed (Kozloff 1974) (Fig. 1); canal narrow, slot-like, review of gastropod taxonomy, see Keen not spout-like; not separated from large whorl and Coan (1974) and McLean (2007). Nu- by revolving groove. cella. ostrina has mistakenly been called N. Umbilicus: Closed (McLean 2007). emarginata though it has now been found Aperture: Wide; length more than 1/2 that the two species diverged in the late shell length (Oldroyd 1924). Ovate in outline, Pleistocene epoch (Marko et al. 2003) with a short anterior canal but no posterior notch (Fig. 1). Description Outer Lip: Thin, crenulate, not thick Size: Rarely over 30 mm (Kozloff 1974), and layered (Oldroyd 1924). No denticles or usually up to 20 mm (Puget Sound); up to anal notch on posterior (upper) end, no single 40 mm, but rarely over 30 mm (California) strong tooth near anterior canal. No row(s) or (Abbott and Haderlie 1980); illustrated speci- denticles within lip. men (Coos Bay) 20 mm. Females slightly Operculum: Dark brown with nucleus larger than males (average 18.9 and 17.8) on one side (Fig. 2). (Houston 1971). Eggs: Pale yellow, vase-shaped, about 6 mm Color: Exterior brown and dingy white, dirty high, in clusters of up to 300 capsules (Abbott gray, yellow or almost black (if diet of mus- and Haderlie 1980) (Fig. 4). Each capsule sels); yellow, black or gray periostracum in with 500-600 eggs. Each capsule with a longi- grooves between ridges; ridges sometimes tudinal suture and a hard clear escape aper- white (black in this specimen). Interior: aper- ture. ture and columella chestnut brown or purple. Shell: Possible Misidentifications Shape: Fusiform; short spire, ex- Snails of the genus Nucella can be panded whorl. Shell thin, not heavy. 3-4 distinguished from other carnivorous estua- whorls; nuclear whorl inconspicuous. rine gastropods by their sculpture (the same Sculpture: Spire relatively high, par- on both spire and whorls), by the large body tial nub of aperture lacking (McLean 2007); whorl and by the large ovate aperture. Other alternating large and small spiral ridges over genera with a siphonal notch, and generally most of shell, can be nodulose; sometimes fusiform shape include: ridges are obscure and surface is fairly Olivella and Buccinum, which have col- smooth. Axial sculpture wrinkled, not promi- umellar folds; nent. Ocenebra and Ceratostoma which Columella: Sunken and concave, have a spout-like siphonal canal, not a narrow arched and flattened below: species ostrina; -slot-like one as in Nucella; no folds, (Fig. 1). Tritia reticulata and Lirabuccinum Suture: Not deep (Fig. 1). dirum which have a distinct revolving furrow A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Bering, N., T. Hext and E. Parker. 2017. Nucella ostrina. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biol- ogy, Charleston, OR. or fossa setting off the anterior canal from horizontal ridges themselves are not alternat- the body whorl; (Lirabuccinum has spiral ing large and small (compare Fig. 2, N. lamel- sculpture only on the body whorl; the spire losa in this guide). Nucella lamellosa inhabits has both spiral and axial ribs); Acanthina much quieter waters, as a rule, and a lower (also from the family Thaisidae), which has a tidal range than does N. ostrina. Its color is strong tooth on the anterior end of the outer usually lighter; it is rarely blackish. lip. A fourth species of Nucella, Nucella There are three other species of Nu- emarginata though not found in our area can cella in our area. Two are not typically found easily be confused with N. ostrina because in estuarine conditions, but they do look they are morphologically cryptic. See Marko quite a bit like N. ostrina: et al. (2003) for a more detailed discussion. Nucella lima, the file dogwinkle, is Ecological Information subtidal, short-spired, and fairly rare. It is Range: Bering Sea south to northern Baja whitish to brown, with about 15 alternating California, but rare below Pt. Conception large and small file-like spiral ridges on the (Abbott and Haderlie 1980). large whorl. It can be up to 43 mm, some- Local Distribution: Coos Bay: marine por- what larger than N. ostrina. tions, i.e. near bay mouth up to Fossil Point. Nucella canaliculata, the channeled Habitat: Almost entirely on rocky shores; in dogwhelk, has a high spire and a prominent fairly heavy surf (Ricketts and Calvin 1971); shoulder below the deep suture. It is light also in semi-protected areas (Houston 1971). (white to orange), and sometimes banded. Outer shores in mussel beds, on jetties. Its 14-16 spiral ridges are very evenly Salinity: Full seawater; collected at 30. shaped and spaced. It is an inhabitant of Temperature: Cold to temperate waters: outer shore mussel beds. Larger than N. os- small animals high in tidal range show great trina, it averages 26.5 mm (male) and 24.8 thermal resistance, active at range of 0-30°C mm (female) (California) (Houston 1971). (Bertness and Schneider 1976). The third species, Nucella lamellosa Tidal Level: Ubiquitous intertidal predators, (see description in this guide), is the most found from mid to high intertidal zones (Moran common dogwinkle in the northwest, quite and Emlet 2001). common in bays and estuaries, and one of Associates: Primary prey is barnacles, espe- its many variations is very like N. ostrina. N. cially Balanus; mussel Mytilus; Pisaster lamellosa can have strong axial ruffles, be ochraceus. Commensal flatworm Nexilis quite smooth, or have strong horizontal ribs. epichitonius found in specimens on Coos Bay In this last case, it is difficult to distinguish entrance jetty (Holliman and Hand 1962). from N. ostrina. N. lamellosa has a higher Weight: 1.5 gm (wet). spire (usually 5-7 whorls, including the tiny Abundance: Common to abundant (McLean nuclear whorl); it is heavy, with a thick- 2007); much less common in inner bay than layered lip, not a thin crenulated one. There N. lamellosa (Coos Bay). is usually at least one row of denticles inside the lip in N. lamellosa; its anterior canal is Life-History Information longer than that of N. ostrina (more than 1/4 Reproduction: Found to spawn year-round in aperture length). While N. lamellosa can Bodega Bay, Calif. and throughout Oregon, have strong spiral ridges, the body whorl in but most activity is in November-February. this species is then often flattened and an- Little hermaphroditism (Houston 1971). gled, not expanded as in N. ostrina, and the Spawning is not salinity, photoperiod or tem- A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] perature-related (Houston 1971). Females 1980. Prosobranchia: marine snails, p.230 gregarious (groups to 20), deposit egg cap- -307. In: Intertidal invertebrates of Califor- sules in clusters. Each female lays 8-9 cap- nia. R.H. MORRIS, D. P. ABBOTT, and E. sules; stalked capsules have about 200-300 C. HADERLIE (eds.). Stanford University eggs each (ibid), many of which may be Press, Stanford, California. sterile nurse eggs which are consumed by 2. BERTNESS, M. D., and D. E. SCHNEI- developing larvae. Veligers swim in capsule DER. 1976. Temperature relations of Pu- fluid and metamorphose into snails about get Sound thaids in reference to their inter- 1.1 mm long, emerging from plug at top of tidal distribution. The Veliger. 19:47-78. capsule (ibid). Pacific Northwest hatchlings 3. DAWSON, M. N., HAYS, C. G., GROS- number about 10-20 per capsule average; BERG, R. K., and RAIMONDI, P. T. 2014. Bodega Bay about 5% hatch (10-15) (ibid). Dispersal potential and population genetic Larva: Four distinct stages: advanced shell structure in the marine intertidal of the measures 775µ long (LeBoeuf 1971) (Fig. Eastern North Pacific. Ecological Mono- 5). graphs. 84.3: 435-456. Juvenile: 4. HOLLIMAN, J. T., and C. HAND. 1962. A Longevity: 5-10 years (Dawson et al. 2014). new species, genus, and family of marine Growth Rate: Pacific Northwest: 2.5-3 flatworms (Turbellaria: Tricladia, Maricola) months from egg deposition to hatching; commensal with mollusks. The Veliger. possibly more rapid development farther 5:20-22. south (Abbott and Haderlie 1980). 5. HOUSTON, R. S. 1971. Reproductive biol- Food: Prefers mussels Mytilus edulis and M. ogy of Thais emarginata (Deshayes 1839) californianus; also barnacles Balanus, Polli- and Thais canaliculata (Duclos 1832). The cipes, Chthamalus; limpet Lottia, as well as Veliger. 13:348-357 herbivorous gastropods Tegula funebralis 6. KEEN, A. M. and E.V. COAN. 1974. Ma- and Littorina. Feeding is by drilling with the rine molluscan genera of Western North radula, inserting the proboscis, and feeding America; an illustrated key. 2d ed. Stan- on the soft body within. Species N. ostrina ford, Calif.: Stanford University Press. shows a wide food preference, but individu- 7. KOZLOFF, E.N. 1974. Keys to the marine als seem to be consistent in diet (Abbott and invertebrates of Puget Sound, the San Haderlie 1980). Juan Archipelago, and adjacent regions.
Recommended publications
  • GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
    GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N.
    [Show full text]
  • Download Download
    Appendix C: An Analysis of Three Shellfish Assemblages from Tsʼishaa, Site DfSi-16 (204T), Benson Island, Pacific Rim National Park Reserve of Canada by Ian D. Sumpter Cultural Resource Services, Western Canada Service Centre, Parks Canada Agency, Victoria, B.C. Introduction column sampling, plus a second shell data collect- ing method, hand-collection/screen sampling, were This report describes and analyzes marine shellfish used to recover seven shellfish data sets for investi- recovered from three archaeological excavation gating the siteʼs invertebrate materials. The analysis units at the Tseshaht village of Tsʼishaa (DfSi-16). reported here focuses on three column assemblages The mollusc materials were collected from two collected by the researcher during the 1999 (Unit different areas investigated in 1999 and 2001. The S14–16/W25–27) and 2001 (Units S56–57/W50– source areas are located within the village proper 52, S62–64/W62–64) excavations only. and on an elevated landform positioned behind the village. The two areas contain stratified cultural Procedures and Methods of Quantification and deposits dating to the late and middle Holocene Identification periods, respectively. With an emphasis on mollusc species identifica- The primary purpose of collecting and examining tion and quantification, this preliminary analysis the Tsʼishaa shellfish remains was to sample, iden- examines discarded shellfood remains that were tify, and quantify the marine invertebrate species collected and processed by the site occupants for each major stratigraphic layer. Sets of quantita- for approximately 5,000 years. The data, when tive information were compiled through out the reviewed together with the recovered vertebrate analysis in order to accomplish these objectives.
    [Show full text]
  • Climate Change Report for Gulf of the Farallones and Cordell
    Chapter 6 Responses in Marine Habitats Sea Level Rise: Intertidal organisms will respond to sea level rise by shifting their distributions to keep pace with rising sea level. It has been suggested that all but the slowest growing organisms will be able to keep pace with rising sea level (Harley et al. 2006) but few studies have thoroughly examined this phenomenon. As in soft sediment systems, the ability of intertidal organisms to migrate will depend on available upland habitat. If these communities are adjacent to steep coastal bluffs it is unclear if they will be able to colonize this habitat. Further, increased erosion and sedimentation may impede their ability to move. Waves: Greater wave activity (see 3.3.2 Waves) suggests that intertidal and subtidal organisms may experience greater physical forces. A number of studies indicate that the strength of organisms does not always scale with their size (Denny et al. 1985; Carrington 1990; Gaylord et al. 1994; Denny and Kitzes 2005; Gaylord et al. 2008), which can lead to selective removal of larger organisms, influencing size structure and species interactions that depend on size. However, the relationship between offshore significant wave height and hydrodynamic force is not simple. Although local wave height inside the surf zone is a good predictor of wave velocity and force (Gaylord 1999, 2000), the relationship between offshore Hs and intertidal force cannot be expressed via a simple linear relationship (Helmuth and Denny 2003). In many cases (89% of sites examined), elevated offshore wave activity increased force up to a point (Hs > 2-2.5 m), after which force did not increase with wave height.
    [Show full text]
  • Relative Temperature Scaling of Metabolic and Ingestion Rates
    Toward predicting community-level effects of climate: relative temperature scaling of metabolic and ingestion rates Iles, A. C. (2014). Toward predicting community-level effects of climate: relative temperature scaling of metabolic and ingestion rates. Ecology, 95(9), 2657–2668. doi:10.1890/13-1342.1 10.1890/13-1342.1 Ecological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Ecology, 95(9), 2014, pp. 2657–2668 Ó 2014 by the Ecological Society of America Toward predicting community-level effects of climate: relative temperature scaling of metabolic and ingestion rates 1 ALISON C. ILES Department of Zoology, Oregon State University, Corvallis, Oregon 97331 USA Abstract. Predicting the effects of climate change on ecological communities requires an understanding of how environmental factors influence both physiological processes and species interactions. Specifically, the net impact of temperature on community structure depends on the relative response of physiological energetic costs (metabolism) and energetic gains (ingestion of resources) that mediate the flow of energy throughout a food web. However, the relative temperature scaling of metabolic and ingestion rates have rarely been measured for multiple species within an ecological assemblage and it is not known how, and to what extent, these relative scaling differences vary among species. To investigate the relative influence of these processes, I measured the temperature scaling of metabolic and ingestion rates for a suite of rocky intertidal species using a multiple regression experimental design. I compared oxygen consumption rates (as a proxy for metabolic rate) and ingestion rates by estimating the temperature scaling parameter of the universal temperature dependence (UTD) model, a theoretical model derived from first principles of biochemical kinetics and allometry.
    [Show full text]
  • Seashore Beaty Box #007) Adaptations Lesson Plan and Specimen Information
    Table of Contents (Seashore Beaty Box #007) Adaptations lesson plan and specimen information ..................................................................... 27 Welcome to the Seashore Beaty Box (007)! .................................................................................. 28 Theme ................................................................................................................................................... 28 How can I integrate the Beaty Box into my curriculum? .......................................................... 28 Curriculum Links to the Adaptations Lesson Plan ......................................................................... 29 Science Curriculum (K-9) ................................................................................................................ 29 Science Curriculum (10-12 Drafts 2017) ...................................................................................... 30 Photos: Unpacking Your Beaty Box .................................................................................................... 31 Tray 1: ..................................................................................................................................................... 31 Tray 2: .................................................................................................................................................... 31 Tray 3: ..................................................................................................................................................
    [Show full text]
  • Urchin Rocks-NW Island Transect Study 2020
    The Long-term Effect of Trampling on Rocky Intertidal Zone Communities: A Comparison of Urchin Rocks and Northwest Island, WA. A Class Project for BIOL 475, Marine Invertebrates Rosario Beach Marine Laboratory, summer 2020 Dr. David Cowles and Class 1 ABSTRACT In the summer of 2020 the Rosario Beach Marine Laboratory Marine Invertebrates class studied the intertidal community of Urchin Rocks (UR), part of Deception Pass State Park. The intertidal zone at Urchin Rocks is mainly bedrock, is easily reached, and is a very popular place for visitors to enjoy seeing the intertidal life. Visits to the Location have become so intense that Deception Pass State Park has established a walking trail and docent guides in the area in order to minimize trampling of the marine life while still allowing visitors. No documentation exists for the state of the marine community before visits became common, but an analogous Location with similar substrate exists just offshore on Northwest Island (NWI). Using a belt transect divided into 1 m2 quadrats, the class quantified the algae, barnacle, and other invertebrate components of the communities at the two locations and compared them. Algal cover at both sites increased at lower tide levels but while the cover consisted of macroalgae at NWI, at Urchin Rocks the lower intertidal algae were dominated by diatom mats instead. Barnacles were abundant at both sites but at Urchin Rocks they were even more abundant but mostly of the smallest size classes. Small barnacles were especially abundant at Urchin Rocks near where the walking trail crosses the transect. Barnacles may be benefitting from areas cleared of macroalgae by trampling but in turn not be able to grow to large size at Urchin Rocks.
    [Show full text]
  • Kreis 1 Vertical Migration Patterns of Two Marine Snails: Nucella Lamellosa and Nucella Ostrina Maia Kreis [email protected] NERE
    Vertical migration patterns of two marine snails: Nucella lamellosa and Nucella ostrina Maia Kreis [email protected] NERE Apprenticeship Friday Harbor Laboratories Spring 2012 Keywords: Nucella lamellosa, Nucella ostrina, behavior, tide cycle, vertical migration, tagging methods, intertidal Kreis 1 Abstract Nucella ostrina and Nucella lamellosa are two species of predatory marine intertidal snail. They are common along the coast from California to Alaska, US and prey upon barnacles. We studied vertical migration and feeding patterns of each species and the best method for tagging them. We found that there was not much fluctuation in vertical movement, nor any significant peaks in feeding over our study period; however we did verify that N. lamellosa move up the shore a bit to feed. We also found that radio tagged N. lamellosa were more abundant lower on shore than their typical zone. These studies will help future studies on Nucella spp as well as further advance our efforts in predicting effects of climate change of behavior. Introduction Over the course of the next century, coastal regions are expected to experience a temperature increase of several degrees (IPCC 2007). Its effect on the natural world is a concern for many. Changes in temperature are likely to modify animal behavior. For example, Kearney (2009) found that lizards generally attempt to stay cool, e.g. by seeking shade when the sun comes out. If climate change decreases vegetation and therefore shade, lizards may have to spend more energy traveling to find food and shade (Kearney 2009). Similarly, climate change may alter organismal behavior along the coasts if warmer temperatures become stressful to marine ectotherms.
    [Show full text]
  • Assessing the Impact of Key Marine Invasive Non-Native Species on Welsh MPA Habitat Features, Fisheries and Aquaculture
    Assessing the impact of key Marine Invasive Non-Native Species on Welsh MPA habitat features, fisheries and aquaculture. Tillin, H.M., Kessel, C., Sewell, J., Wood, C.A. Bishop, J.D.D Marine Biological Association of the UK Report No. 454 Date www.naturalresourceswales.gov.uk About Natural Resources Wales Natural Resources Wales’ purpose is to pursue sustainable management of natural resources. This means looking after air, land, water, wildlife, plants and soil to improve Wales’ well-being, and provide a better future for everyone. Evidence at Natural Resources Wales Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment. We will realise this vision by: Maintaining and developing the technical specialist skills of our staff; Securing our data and information; Having a well resourced proactive programme of evidence work; Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and Communicating our evidence in an open and transparent way. This Evidence Report series serves as a record of work carried out or commissioned by Natural Resources Wales. It also helps us to share and promote use of our evidence by others and develop future collaborations. However, the views and recommendations presented in this report are not necessarily those of
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Marine Mollusca of Isotope Stages of the Last 2 Million Years in New Zealand
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232863216 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) Article in Journal- Royal Society of New Zealand · March 2011 DOI: 10.1080/03036758.2011.548763 CITATIONS READS 19 690 1 author: Alan Beu GNS Science 167 PUBLICATIONS 3,645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrating fossils and genetics of living molluscs View project Barnacle Limestones of the Southern Hemisphere View project All content following this page was uploaded by Alan Beu on 18 December 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Beu, A. G.] On: 16 March 2011 Access details: Access Details: [subscription number 935027131] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of the Royal Society of New Zealand Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t918982755 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) AG Beua a GNS Science, Lower Hutt, New Zealand Online publication date: 16 March 2011 To cite this Article Beu, AG(2011) 'Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia)', Journal of the Royal Society of New Zealand, 41: 1, 1 — 153 To link to this Article: DOI: 10.1080/03036758.2011.548763 URL: http://dx.doi.org/10.1080/03036758.2011.548763 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes.
    [Show full text]
  • Molecular Data Reveal Cryptic Lineages Within the Northeastern Atlantic And
    bs_bs_banner Zoological Journal of the Linnean Society, 2013, 169, 389–407. With 4 figures Molecular data reveal cryptic lineages within the northeastern Atlantic and Mediterranean small mussel drills of the Ocinebrina edwardsii complex (Mollusca: Gastropoda: Muricidae) ANDREA BARCO1, ROLAND HOUART2, GIUSEPPE BONOMOLO3, FABIO CROCETTA4 and MARCO OLIVERIO1* 1Department of Biology and Biotechnology ‘C. Darwin’, University of Rome ‘La Sapienza’, Viale dell’Università 32, I-00185 Rome, Italy 2Belgian Royal Institute of Natural Sciences, Rue Vautier, 29, B-1000 Bruxelles, Belgium 3Via delle Terme 12, I-60035 Jesi, Italy 4Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy Received 27 March 2013; revised 2 July 2013; accepted for publication 9 July 2013 We used a molecular phylogenetic approach to investigate species delimitations and diversification in the mussel drills of the Ocinebrina edwardsii complex by means of a combination of nuclear (internal transcribed spacer 2, ITS2) and mitochondrial [cytochrome oxidase subunit I (COI) and 16S] sequences. Our sample included 243 specimens ascribed to seven currently accepted species from 51 sites. Five of the samples were from either the type locality of a nominal species or a close nearby locality (O. edwardsii from Corsica, O. carmelae and O. piantonii from the Kerkennah Islands, O. hispidula from the Gulf of Gabès and O. leukos from the Canary Islands), one from the inferred original locality (O. ingloria from Venice Lagoon), and specimens assigned in the recent literature to O. nicolai. We used a combination of distance- and tree-based species delimitation methods to identify Molecular Operational Taxonomic Units (MOTUs) to compare with the a priori species identifications.
    [Show full text]
  • The Impact of Tributyltin in the Cook Inlet Watershed Team
    Hasse et. al. The Impact of Tributyltin in the Cook Inlet Watershed Team: Mat-Tsunamis Ariel Hasse Joshua Hartman Ashton Lund Corina Monroe Peyton Murphy Mat-Su Career and Technical High School 2472 N. Seward Meridian Pkwy Wasilla, AK 99654 Primary Contact: Ariel Hasse [email protected] Coach: Timothy Lundt [email protected] Disclaimer: This paper was written as part of the Alaska Ocean Sciences Bowl high school competition. The conclusions in this report are solely those of the student authors. Hasse et. al. The Impact of Tributyltin in the Cook Inlet Watershed From the shores of England to the watersheds of Alaska, all marine environments face degradation with the exposure of tributyltin, commonly known as TBT. Since the introduction of TBT in the 1960s, boat hulls and fishing equipment have become more hydrodynamic by eliminating microbial organisms’ growth on marine equipment therefore increasing efficiency. However, in the late 1970s and 1980s, the environmental cost of such efficiencies became apparent with the loss of marine habitat. Bottom dwelling primary consumers began to develop mutations that could cause death and disease, and secondary and tertiary consumers also experienced similar health declensions due to TBT exposure. In Alaska’s Cook Inlet the effects of TBT were recorded officially in 1986 with conformational research conducted in 2006. This watershed houses a diverse ecosystem and is an important economic area for Alaska. The recorded disturbance that the toxin, TBT, causes to this critical inlet is detrimental to the habitat and organisms, as well as Alaskan residents. However, since Alaska banned TBT in 2001, little research or remediation has been conducted.
    [Show full text]