Mosquitoes (Diptera, Culicidae) of the Morava River Floodplain, Slovakia

Total Page:16

File Type:pdf, Size:1020Kb

Mosquitoes (Diptera, Culicidae) of the Morava River Floodplain, Slovakia Cent. Eur. J. Biol. • 7(5) • 2012 • 917-926 DOI: 10.2478/s11535-012-0061-0 Central European Journal of Biology Mosquitoes (Diptera, Culicidae) of the Morava River floodplain, Slovakia Research Article Lucia Strelková*, Jozef Halgoš Department of Ecology, Faculty of Natural Sciences Comenius University, 842 15 Bratislava 4, Slovakia Received 07 February 2012; Accepted 15 May 2012 Abstract: Research on the Morava River floodplain mosquito fauna was carried out from April to October in 2009 and 2010. Altogether, 5864 adults were collected and identified from 12 selected sites. The presence of 28 mosquito species belonging to6 genera were confirmed in the study area. The floodplain of the Morava River is known for its frequent inundationevery year. The floods are quite irregular and often followed by the mass production of mosquitoes. The most abundant species were Aedes vexans (41.4%), Ae. cinereus (7.5%), Ae. rossicus (16.7%), Ochlerotatus sticticus (20.5%), and Culex pipiens (3.1%). Ae. vexans and Oc. sticticus are typical outbreak species for the Morava River floodplain. The years 2009 and 2010 differed in the number of floods, which influenced the mosquito faunal composition and abundance during theyear. Keywords: Mosquitoes • Morava River Basin • Seasonal changes • Floods • Floodplain ©VersitaSp.zo.o. 1. Introduction There are 50 mosquito species recorded in Slovakia. More attention started to be paid to the family Culicidae Spreading of diseases across Europe in the last several at the beginning of the 20th century due to the occurrence years has led to the necessity of mosquito monitoring. of malaria in Slovakia, which was eradicated in 1963 [2]. Tropical mosquito-borne diseases like dengue, Mosquitoes transmitted or still transmit four arboviruses: chikungunya, and West Nile fever have rapidly become Ťahyňa, Čalovo, Sindbis, and West Nile [3], in the territory a threat to public health in Europe that is proving difficult of Slovakia. West Nile virus was reported in humans from to confront. The presence and spread of these types several countries in Central and Eastern Europe and the of diseases depend on many different and interacting Mediterranean last year, and 2010 saw the highest number factors, such as the current distribution of mosquitoes of human cases reported, suggesting it has become a re- and their population densities, climate, wind patterns, emerging pathogen in Europe [4] (http://archive.defra.gov. proximity to bodies of water, land use, and vegetation. uk/foodfarm/farmanimal/diseases/monitoring/documents/ In addition, the frequency of intercontinental travel wnv-europe.pdf). Another mosquito-borne disease in and trade and global warming allow foreign species Slovakia is dirofilariosis. The first autochthonous case in to establish themselves in new environments, where Slovakia was recorded in dogs in 2005, and first human their natural enemies are not found. In the recent past, case occurred in 2007 in Western Slovakia [5], the area considerable fluctuation in air temperature has been where our research was carried out. At present, dirofilariosis typical for spring and summer. Precipitation has been is regarded as the fastest-spreading arthropod-borne irregularly spread during the year, in contrast with disease, and represents a high infection risk for both normal conditions featuring long dry periods alternating animals and humans [6]. with heavy rains, which caused localised or extensive The Morava River floodplain, with various types floods with mosquito calamities [1]. of stagnant waters, offers suitable conditions for * E-mail: [email protected] 917 Mosquitoes (Diptera, Culicidae) of the Morava River floodplain, Slovakia mosquito hatching. Variation in climatic conditions can Devín Castle near the town of Bratislava to the village of lead to noticeable changes taking place in freshwater Moravský Svätý Ján. The study sites represent different ecosystems, which are particularly evident in the types of stagnant waters (including plesiopotamal, species composition and ecology of the examined palaeopotamal, breeding sites in forests and on animal groups [7]. The key factors that influence meadows, and temporary ponds created and filled by composition, abundance, and ecology of mosquito rainfall or groundwater). Selected characteristics of the species are changes in the hydrological regime and 12 study sites are summarized in Table 1. water and air temperatures. The Morava River floodplain Material was collected at least once a month from is characterized by its frequent and often irregular floods April to October, depending on floods. Some of the every year. These floods create ideal breeding habitats study sites were not always accessible due to flooding. for floodwater species of mosquitoes of the genera Adults were collected by sweeping the vegetation with Aedes and Ochlerotatus. The years 2009 and 2010 entomological nets (diameter 25 cm) for 10 minutes at differed in the number and frequency of flood events. each breeding site. Collection began in the early morning Changes in climatic conditions lead to changes in the at site 1 and continued over all sites in one day. Water phenology of mosquitoes [7]. Earlier snow melt and temperature was also measured at breeding sites. The spring precipitation could result in a shift in the larval collected mosquitoes were killed by ether, transported development of the spring monovoltine species [7]. The to the laboratory, and stored in the freezer. Sex was mosquito production can be influenced by the extent determined using a stereomicroscope. All males were of flooding and previous precipitation, and the final dissected and external genitalia were mounted in mosquito assemblage depends on the local hydrological Canada balsam. Morphological identification keys were conditions [8]. used for species identification [10,11]. We used PAST software version 1.95 (http://folk.uio.no/ ohammer/past/) to evaluate the data for site similarity based 2. Experimental Procedures on the presence/absence of species (Jaccard index). The Morava River floodplain is one of the last well- preserved wetlands in Central Europe [9]. Collections 3. Results of mosquitoes were made at 12 selected sites in the Morava River floodplain (Figure 1) from April to October Years 2009 and 2010 were very similar when considering in 2009 and 2010. The study area extends from the the mean monthly air temperature (Figure 2). The Figure 1. Locations of collection sites in the Morava River floodplain, Slovakia (source: www.maps.google.com). 918 L. Strelková, J. Halgoš Altitude (m Depth Shading Sediment Site Latitude (N) Longitude (E) Biotope Ambience above sea level) (m) (%) type 1. Moravský Sv. Ján - before 48°36’01,4’’ 16°56’39,9’’ 83.3 SP 0.4 W, M 20 earth embankment 2. Moravský Sv. Ján - behind 48°36’01,4’’ 16°56’39,9’’ 83.3 D 0.4 W 100 mud embankment 3. Lantov - tributary 48°34’10,5’’ 16°57’16,0’’ 150.6 Pal 1 M 40 mud 4. Lantov - meadow 48°34’10,5’’ 16°57’16,0’’ 150.6 Moor 0.7 M 0 mud 5. Malé Leváre a 48°33’15,2’’ 16°57’38,0’’ 140 D 0.5 W 100 mud 6. Malé Leváre b 48°30’50,6’’ 16°56’00,4’’ 112 D 0.4 W 100 mud 7. Vysoká pri Morave 48°19’14,8’’ 16°54’29,8’’ 137 Ple 0.5 S,M 75 mud 8. Devínske jazero - meadow 48°16’23,4’’ 16°55’46,1’’ 136.1 Ple 0.2 M 10 mud 9. Devínske jazero - forest 48°16’18,9’’ 16°55’52,0’’ 131 D 0.6 W 100 earth 10. Devínske jazero - tributary 48°15’42,2’’ 16°57’30,9’’ 123.6 Ple 0.5 M 10 mud 11. Devínska Nová Ves - 48°19’49,0’’ 16°97’40,4’’ 124 D 0.2 W 100 earth alluvial forest 12. Devín - near the castle 48°10’33,4’’ 16°58’40,1’’ 124 SD 0.8 W, M 50 mud Table 1. Characteristics of the study sites. Abbreviations: D = depression filled by groundwater, SP = pool filled with water in spring only, Ple = plesiopotamal, Pal = palaeopotamal, W = wood, M = meadow, S = suburban area. Figure 2. Mean monthly air temperature and precipitation in Moravský Svätý Ján (data from Slovak Hydrometeorological Institute in Bratislava). greatest differences occurred in April (14.4°C in 2009 lasted from May to September, with the highest values and 10.4°C in 2010) and September (16.5°C in 2009 in May and August. and 13.9°C in 2010). The other months differed by no A total of 5864 adult mosquitoes belonging to 28 more than 2°C. The years 2009 and 2010 differed in the species were collected (Table 2). A total of 3205 adults water level and precipitation values throughout the year were collected in 2009. The months with the highest (Figures 2 and 3). While the floods in 2009 occurred in abundance were July and August. The most abundant the spring and summer months only, the year 2010 was species were Ae. vexans, Oc. sticticus, Ae. rossicus, atypical with respect to the frequency and duration of and Ae. cinereus (Table 3), together representing over floods. The water level of the Morava River reached its 85% of all specimens collected. There was only one highest values in March, May and June, but Figure 3 peak of abundance of all species sampled in 2009, shows that raised water levels occurred many times although there were several generations of some throughout the year. In 2009, higher rates of precipitation species (Figure 4). A total of 2659 adult mosquitoes were lasted from February until March, from May until August, collected in 2010. The most abundant species were Ae. and in November. In 2010, high mean precipitation vexans, Oc. sticticus, Ae. rossicus, and Cx. pipiens 919 Mosquitoes (Diptera, Culicidae) of the Morava River floodplain, Slovakia Figure 3. Daily water level values of the Morava River in Moravský Svätý Ján in 2009 and 2010 (data from the Slovak Hydrometeorological Institute, Bratislava).
Recommended publications
  • Spread of the West Nile Virus Vector Culex Modestus and the Potential Malaria Vector Anopheles Hyrcanus in Central Europe
    Vol. 33, no. 2 Journal of Vector Ecology 269 Spread of the West Nile virus vector Culex modestus and the potential malaria vector Anopheles hyrcanus in central Europe Jan Votýpka1,2, Veronika Šeblová1, and Jana Rádrová1 1 Faculty of Sciences, Charles University, Viničná 7, 12844 Prague, Czech Republic 2 Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic Received 14 February 2008; Accepted 22 August 2008 ABSTRACT: Mosquito faunal studies were carried out in five separate wetland regions in the Czech Republic during 2004- 2007, sampling with dry ice-baited and sentinel host-baited CDC traps. A total of 79,245 adults was identified, representing 23 mosquito species that belonged to the genera Anopheles, Culiseta, Coquillettidia, Aedes, and Culex. Our findings reveal that the mosquito fauna is enriched by new elements in the Mediterranean region. Historical and CDC trap data suggest that the newly-emerging potential malaria vector, Anopheles hyrcanus, has reached the northern limit of its distribution in the Czech Republic, and the important West Nile virus (WNV) vector, Culex modestus, has widened its distribution in the Czech Republic. No significant differences were observed in a total number of mosquitoes collected by traps baited with either the sentinel animals or with CO2, although species abundance differed. A relativelyhigher proportion of Cx. modestus was collected in the sentinel-baited traps, while the proportion of Cx. pipiens was higher in the CO2-baited traps. Journal of Vector Ecology 33 (2): 269-277. 2008. Keyword Index: Mosquitoes, WNV, Czech Republic, climate change. INTRODUCTION al. 2007).
    [Show full text]
  • Climate Change and Vector-Borne Disease in Humans in the UK
    POSTNOTE Number 597 April 2019 Climate Change and Vector-Borne Diseases in Humans in the UK Overview ◼ Vector-borne diseases are transmitted by organisms, such as ticks and mosquitoes. ◼ The UK has both native and invasive non- native vectors. The distribution of these species is changing across Europe. ◼ The causes of vector distribution change are complex and interlinked, but climate change plays a key role, especially in mosquito distribution. ◼ Tick-borne diseases are more susceptible to A consequence of long-term alterations to the UK changes in landscape and host population climate is changes to populations of native and density. These factors are correlated with invasive non-native species, including the the spread of Lyme disease. prevalence of disease-transmitting species, such ◼ Surveillance coverage and methods vary for as ticks or mosquitoes. This POSTnote vector species; there is consensus that UK summarises the latest data on vector-borne surveillance requires improvement. disease in the UK, explores how climate may ◼ Addressing knowledge gaps and managing influence the geographical distribution of species, vector populations, alongside improved examines the consequences for public health, public awareness are important factors in and explores potential adaptation and mitigation tackling vector-borne diseases. strategies. Background shows that species distribution is changing, and A vector is an organism that carries and transmits disease concurrently shifting the pattern of Lyme disease cases.7 between humans, animals and
    [Show full text]
  • Establishment of Culex Modestus in Belgium and a Glance Into the Virome of Belgian Mosquito Species
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.27.401372; this version posted February 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Establishment of Culex modestus in Belgium and a glance into the virome of Belgian 2 mosquito species 3 4 Lanjiao Wanga*, Ana Lucia Rosales Rosasa*, Lander De Coninck b, Chenyan Shi b, Johanna 5 Bouckaerta, Jelle Matthijnssens b, Leen Delanga# 6 aKU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium. bLaboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium. 7 Running Head: Establishment of Culex modestus in Belgium 8 *Lanjiao Wang and Ana Lucia Rosales Rosas contributed equally to this work. # Address correspondence to Prof. Leen Delang, [email protected] 9 10 Abstract: 11 Culex modestus mosquitoes are known transmission vectors of West Nile virus and Usutu 12 virus. Their presence has been reported across several European countries, including only 13 one larva confirmed in Belgium in 2018. Mosquitoes were collected in the city of Leuven 14 and surroundings in the summer of 2019 and 2020. Species identification was performed 15 based on morphological features and partial sequences of the mitochondrial cytochrome 16 oxidase subunit 1 (COI) gene. The 107 mosquitoes collected in 2019 belonged to eight 17 mosquito species: Cx. pipiens (24.3%), Cx.
    [Show full text]
  • Spread of the West Nile Virus Vector Culex Modestus and the Potential
    Spread of the West Nile virus vector Culex modestus and the potential malaria vector Anopheles hyrcanus in central Europe Author(s): Jan Votýpka, Veronika Šeblová, Jana Rádrová Source: Journal of Vector Ecology, 33(2):269-277. Published By: Society for Vector Ecology DOI: http://dx.doi.org/10.3376/1081-1710-33.2.269 URL: http://www.bioone.org/doi/full/10.3376/1081-1710-33.2.269 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Vol. 33, no. 2 Journal of Vector Ecology 269 Spread of the West Nile virus vector Culex modestus and the potential malaria vector Anopheles hyrcanus in central Europe Jan Votýpka1,2, Veronika Šeblová1, and Jana Rádrová1 1 Faculty of Sciences, Charles University, Viničná 7, 12844 Prague, Czech Republic 2 Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic Received 14 February 2008; Accepted 22 August 2008 ABSTRACT: Mosquito faunal studies were carried out in five separate wetland regions in the Czech Republic during 2004- 2007, sampling with dry ice-baited and sentinel host-baited CDC traps.
    [Show full text]
  • The Knowns and Unknowns of West Nile Virus in Europe: What Did We Learn from the 2018 Outbreak?
    Expert Review of Anti-infective Therapy ISSN: 1478-7210 (Print) 1744-8336 (Online) Journal homepage: https://www.tandfonline.com/loi/ierz20 The knowns and unknowns of West Nile virus in Europe: what did we learn from the 2018 outbreak? Jeremy V Camp & Norbert Nowotny To cite this article: Jeremy V Camp & Norbert Nowotny (2020): The knowns and unknowns of West Nile virus in Europe: what did we learn from the 2018 outbreak?, Expert Review of Anti- infective Therapy, DOI: 10.1080/14787210.2020.1713751 To link to this article: https://doi.org/10.1080/14787210.2020.1713751 Accepted author version posted online: 08 Jan 2020. Published online: 14 Jan 2020. Submit your article to this journal Article views: 11 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ierz20 EXPERT REVIEW OF ANTI-INFECTIVE THERAPY https://doi.org/10.1080/14787210.2020.1713751 REVIEW The knowns and unknowns of West Nile virus in Europe: what did we learn from the 2018 outbreak? Jeremy V Camp a and Norbert Nowotny a,b aViral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria; bDepartment of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates ABSTRACT ARTICLE HISTORY Introduction: West Nile virus (WNV) is a mosquito-borne human and animal pathogen with nearly Received 28 October 2019 worldwide distribution. In Europe, the virus is endemic with seasonal regional outbreaks that have Accepted 7 January 2020 increased in frequency over the last 10 years.
    [Show full text]
  • West Nile Virus Vector Culex Modestus Established in Southern England
    Golding et al. Parasites & Vectors 2012, 5:32 http://www.parasitesandvectors.com/content/5/1/32 SHORTREPORT Open Access West Nile virus vector Culex modestus established in southern England Nick Golding1,2*, Miles A Nunn2, Jolyon M Medlock3, Bethan V Purse4, Alexander GC Vaux3 and Stefanie M Schäfer2 Abstract Background: The risk posed to the United Kingdom by West Nile virus (WNV) has previously been considered low, due to the absence or scarcity of the main Culex sp. bridge vectors. The mosquito Culex modestus is widespread in southern Europe, where it acts as the principle bridge vector of WNV. This species was not previously thought to be present in the United Kingdom. Findings: Mosquito larval surveys carried out in 2010 identified substantial populations of Cx. modestus at two sites in marshland in southeast England. Host-seeking-adult traps placed at a third site indicate that the relative seasonal abundance of Cx. modestus peaks in early August. DNA barcoding of these specimens from the United Kingdom and material from southern France confirmed the morphological identification. Conclusions: Cx. modestus appears to be established in the North Kent Marshes, possibly as the result of a recent introduction. The addition of this species to the United Kingdom’s mosquito fauna may increase the risk posed to the United Kingdom by WNV. Keywords: Anopheles, Arboviruses, Culex, Culicidae, Disease Vectors, DNA Barcoding, Taxonomic, Introduced Spe- cies, West Nile virus Findings and around Portsmouth in southern England in 1944-45 Culex modestus is a competent laboratory vector of [6]. West Nile virus (WNV, [1]) and regularly bites birds, humans and horses in continental Europe [2].
    [Show full text]
  • West Nile Virus in Overwintering Mosquitoes, Central Europe
    Rudolf et al. Parasites & Vectors (2017) 10:452 DOI 10.1186/s13071-017-2399-7 SHORT REPORT Open Access West Nile virus in overwintering mosquitoes, central Europe Ivo Rudolf1,2, Lenka Betášová1, Hana Blažejová1, Kristýna Venclíková1,3, Petra Straková1,2, Oldřich Šebesta1, Jan Mendel1, Tamás Bakonyi4,5, Francis Schaffner6,7, Norbert Nowotny5,8* and Zdeněk Hubálek1,2 Abstract Background: West Nile virus (WNV) is currently the most important mosquito-borne pathogen spreading in Europe. Data on overwintering of WNV in mosquitoes are crucial for understanding WNV circulation in Europe; nonetheless, such data were not available so far. Results: A total of 28,287 hibernating mosquitoes [27,872 Culex pipiens,73Anopheles maculipennis (sensu lato), and 342 Culiseta annulata], caught in February or March between 2011 and 2017 in a WNV-endemic region of South Moravia, Czech Republic, were screened for the presence of WNV RNA. No WNV positive pools were found from 2011 to 2016, while lineage 2 WNV RNA was detected in three pools of Culex pipens mosquitoes collected in 2017 at two study sites. Conclusions: To the best of our knowledge, this is the first record of WNV RNA in overwintering mosquitoes in Europe. The data support the hypothesis of WNV persistence in mosquitoes throughout the winter season in Europe. Keywords: West Nile fever, West Nile virus, Flavivirus, Hibernation, Overwintering, Culex pipiens, Anopheles maculipennis, Culiseta annulata,CzechRepublic Background Overwintering of the introduced WNV-2 in Europe West Nile virus (WNV) is a mosquito-borne virus was assumed (e.g. [4, 5]), yet larger systematic studies (genus Flavivirus; family Flaviviridae) with nearly which specifically focus on the persistence of WNV in cosmopolitan distribution [1].
    [Show full text]
  • Establishment of Culex Modestus in Belgium and a Glance Into the Virome of Belgian
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.27.401372; this version posted February 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Establishment of Culex modestus in Belgium and a glance into the virome of Belgian 2 mosquito species 3 4 Lanjiao Wanga*, Ana Lucia Rosales Rosasa*, Lander De Coninck b, Chenyan Shi b, Johanna 5 Bouckaerta, Jelle Matthijnssens b, Leen Delanga# 6 aKU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium. bLaboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium. 7 Running Head: Establishment of Culex modestus in Belgium 8 *Lanjiao Wang and Ana Lucia Rosales Rosas contributed equally to this work. # Address correspondence to Prof. Leen Delang, [email protected] 9 10 Abstract: 11 Culex modestus mosquitoes are known transmission vectors of West Nile virus and Usutu 12 virus. Their presence has been reported across several European countries, including only 13 one larva confirmed in Belgium in 2018. Mosquitoes were collected in the city of Leuven 14 and surroundings in the summer of 2019 and 2020. Species identification was performed 15 based on morphological features and partial sequences of the mitochondrial cytochrome 16 oxidase subunit 1 (COI) gene. The 107 mosquitoes collected in 2019 belonged to eight 17 mosquito species: Cx. pipiens (24.3%), Cx.
    [Show full text]
  • Impacts of the Creation, Expansion and Management of English Wetlands
    Medlock and Vaux Parasites & Vectors (2015) 8:142 DOI 10.1186/s13071-015-0751-3 REVIEW Open Access Impacts of the creation, expansion and management of English wetlands on mosquito presence and abundance – developing strategies for future disease mitigation Jolyon M Medlock* and Alexander GC Vaux Abstract The incidence of mosquito-borne diseases is increasing in Europe, partly due to the incursion of a number of invasive species known to be vectors of dengue and chikungunya viruses, but also due to the involvement of native species in the transmission of West Nile virus and malaria. For some of these pathogens, there is a risk of the re-emergence of vector-borne diseases that were once widespread in Europe, but declined partly due to large-scale land-drainage projects. Some mosquito species exploit container habitats as breeding sites in urban areas; an adaptation to human-made micro-habitats resulting from increased urbanisation. However, many species thrive in natural wetland ecosystems. Owing to the impacts of climate change there is an urgent need for environmental adaptation, such as the creation of new wetlands to mitigate coastal and inland flooding. In some cases, these initiatives can be coupled with environmental change strategies to protect a range of endangered flora and fauna species by enhancing and extending wetland landscapes, which may by driven by European legislation, particularly in urban areas. This paper reviews field studies conducted in England to assess the impact of newly created wetlands on mosquito colonisation in a) coastal, b) urban and c) arable reversion habitats. It also considers the impact of wetland management on mosquito populations and explores the implications of various water and vegetation management options on the range of British mosquito species.
    [Show full text]
  • Mosquitoes in a Changing Environment Anders Lindström National Veterinary Institute Sweden
    Mosquitoes in a changing environment Anders Lindström National Veterinary Institute Sweden Tree hole mosquito, Aedes geniculatus The One health concept is the realization that we are connected to our environment and that changes in our mosquitoes environment will affect our health through various mechanisms. One Health and House mosquito, Culex pipiens, hatching Why it is hard to talk about the future What we think that we know mosquitoes What we know that we don't know What we don't know that we don't know One Health and Yellow fever mosquito, Aedes aegypti The mosquito fauna is changing We know climate change will affect, among other things • Temperature • Precipitation We also know that the mosquito fauna is changing mosquitoes • New species are establishing in Europe • Native species are changing their distribution We can see emerging mosquito- and vector- borne infections • West Nile Fever • Dengue • Usutu • Chikungunya • Bluetongue • Malaria • Schmallenberg • Zika? One Health and House mosquito, Culex pipiens larva mosquitoes One Health and Blue emperor (Anax imperator) found first in 2002 on Gotland Wasp spider(Argiope bruennichi), found 1989 on Gotland mosquitoes One Health and The parasitic fly Tachina ursina was first observed in Sweden in April 1994 and has spread north mosquitoes One Health and mosquitoes Purple emperor, Apatura iris One Health and First observation 1981, exploded in the last years. What does dragonflies, butterflies and spiders have to do with mosquitoes? • They are big and easy to mosquitoes recognize • They are all affected by climate change • Who is looking for mosquitoes and how they are affected? One Health and Malaria mosquito, Anopheles messeae What about the phenology of native species? Longer seasons means bigger populations at the end of season, which may lead to higher rates of transmission of pathogens.
    [Show full text]
  • Mosquito Species Involved in the Circulation of West Nile and Usutu
    Mosquito species involved in the circulation of West Nile and Usutu viruses in Italy Giuseppe Mancini1*, Fabrizio Montarsi2, Mattia Calzolari3, Gioia Capelli2, Michele Dottori3, Silvia Ravagnan2, Davide Lelli3, Mario Chiari3, Adriana Santilli1, Michela Quaglia1, Valentina Federici1, Federica Monaco1, Maria Goffredo1 and Giovanni Savini1 1 Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100 Teramo, Italy. 2 Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Padova, Italy. 3 Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna‘ Bruno Ubertini’, Via Bianchi 7/9, 25124 Brescia, Italy. * Corresponding author at: Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100 Teramo, Italy. Tel.: +39 0861 332416, Fax: +39 0861 332251, e-mail: [email protected]. Veterinaria Italiana 2017, 53 (2), 97‑110. doi: 10.12834/VetIt.114.933.4764.2 Accepted: 11.03.2016 | Available on line: 30.06.2017 Keywords Summary Italy, Usutu (USUV) and West Nile (WNV) are mosquito‑borne Flavivirus emerged in Italy Mosquitoes, in 1996 and 1998, respectively, and reappeared 10 years later. The aim of this work is to Overwintering, review the Italian mosquito species found positive for WNV and USUV between 2008 and Polymerase chain 2014. Moreover, the role of mosquitoes in promoting the overwintering of these viruses reaction, is discussed, as a result of the mosquito collections performed in Molise region between Usutu virus, September 2010 and April 2011. Overall 99,000 mosquitoes were collected: 337 and 457 West Nile virus. mosquito pools tested positive by real time reverse transcriptase polymerase chain reaction (real time RT‑PCR) for WNV and USUV, respectively.
    [Show full text]
  • Qualitative Assessment of Risk West Nile Virus Presents to UK Health
    Human Animal Infections and Risk Surveillance (HAIRS) group Qualitative assessment of the risk that West Nile virus presents to the UK human health population Updated December 2020 1 Qualitative assessment of the risk that West Nile virus presents to the UK human health population Contents Contents ....................................................................................................................................... 2 About the Human Animal Infections and Risk Surveillance group ............................................... 3 Risk assessment version control .................................................................................................. 4 Risk assessment summary .......................................................................................................... 5 Step 1: Assessment of the probability of infection in the UK human population........................... 6 Step 2: Assessment of the impact on human health .................................................................. 14 References ................................................................................................................................. 17 Annex A: Assessment of the probability of infection in the UK population algorithm .................. 20 Annex B: Accessible text version of the assessment of the probability of infection in the UK population algorithm ............................................................................................................. 21 Annex C: Assessment of the impact on human
    [Show full text]