Efficient Production of Poly(Cyclohexene Carbonate)

Total Page:16

File Type:pdf, Size:1020Kb

Efficient Production of Poly(Cyclohexene Carbonate) polymers Article Efficient Production of Poly(Cyclohexene Carbonate) via ROCOP of Cyclohexene Oxide and CO2 Mediated by NNO-Scorpionate Zinc Complexes Sonia Sobrino 1, Marta Navarro 2, Juan Fernández-Baeza 1, Luis F. Sánchez-Barba 2,* , Agustín Lara-Sánchez 1 , Andrés Garcés 2 , José A. Castro-Osma 1 and Ana M. Rodríguez 1 1 Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Campus Universitario, 13071 Ciudad Real, Spain; [email protected] (S.S.); [email protected] (J.F.-B.); [email protected] (A.L.-S.); [email protected] (J.A.C.-O.); [email protected] (A.M.R.) 2 Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, 28933 Madrid, Spain; [email protected] (M.N.); [email protected] (A.G.) * Correspondence: [email protected]; Tel.: +34-91-488-8504 Received: 4 September 2020; Accepted: 18 September 2020; Published: 21 September 2020 Abstract: New mono- and dinuclear chiral alkoxide/thioalkoxide NNO-scorpinate zinc complexes were easily synthesized in very high yields, and characterized by spectroscopic methods. X-ray diffraction analysis unambiguously confirmed the different nuclearity of the new complexes as well as the variety of coordination modes of the scorpionate ligands. Scorpionate zinc complexes 2, 4 and 6 were assessed as catalysts for polycarbonate production from epoxide and carbon dioxide with no need for a co-catalyst or activator under mild conditions. Interestingly, at 70 ◦C, 10 bar of CO2 pressure and 1 mol % of loading, the dinuclear thioaryloxide [Zn(bpzaepe)2{Zn(SAr)2}] (4) behaves as an efficient and selective one-component initiator for the synthesis of poly(cyclohexene carbonate) via ring-opening copolymerization of cyclohexene oxide (CHO) and CO2, affording polycarbonate materials with narrow dispersity values. Keywords: scorpionate zinc complexes; ring-opening copolymerization (ROCOP); CO2 fixation; poly(cyclohexene carbonate) production 1. Introduction Over the last decade the conversion of carbon dioxide (CO2) into commercially viable commodities has attracted great interest in the scientific community, since carbon dioxide represents a real alternative carbon feedstock for a sustainable chemical industry [1,2]. CO2 is an attractive C-1 renewable building block [3] given its abundance in nature, low cost, non-toxicity, lack of colour and redox activity. Many chemical transformations are possible for this unsaturated molecule; however, the selective production of cyclic carbonates or polycarbonates through the cycloaddition or the ring-opening copolymerization (ROCOP) of CO2 with epoxides, respectively, (see Scheme1) is gaining high attention as a 100% atom-economy route to convert waste CO 2 into valuable materials [4,5]. Polymers 2020, 12, 2148; doi:10.3390/polym12092148 www.mdpi.com/journal/polymers Polymers 2020, 12, 2148 2 of 19 Polymers 2020, 12, x FOR PEER REVIEW 2 of 19 Scheme 1. Synthesis of cyclic and polycarbonates. Scheme 1. Synthesis of cyclic and polycarbonates. TheThus, structures cyclic carbonates of the resulting present importantpolycarbonates, applications which as can electrolytes, include up engineering to 50% of plastics,carbon dioxide solvent, infuel the additives, polymer and backbone, precursors will to determine fine chemicals their [ 6future], whereas applications. polycarbonates For instance, incorporate non-isocyanate very smart polyurethanesphysical features, (NIPUs) such ascan durability, be prepared moldability, employing lightness, initially transparency low molar andmass impact hydroxyl-telechelic resistance [7], polycarbonatesin addition to their [10,11], biodegradability whereas higher and molar biocompatibility mass CO2-derived that make polycarbonates them highly attractivefind numerous in the applicationsbiomedical field as engineering [8,9]. polymers, packaging plastics, elastomers, adhesives and coatings [12]. Nevertheless,The structures given of the the resulting high thermodynamic polycarbonates, stability which and can kinetic include inertness up to 50% of ofthe carbon CO2 molecule dioxide [13],in the the polymer environmental backbone, and will econom determineical viability their future of the applications. ROCOP depends For instance,on the capability non-isocyanate of the catalyticpolyurethanes system (NIPUs) to avoid can high be temperatures prepared employing and pressures initially [14], low which molar should mass hydroxyl-telechelicbe able, in turn, to operate at ambient temperatures and pressures [15] as well as controlling rates and polymer polycarbonates [10,11], whereas higher molar mass CO2-derived polycarbonates find numerous molecularapplications weight as engineering and composition polymers, [16]. packaging In this plastics, context, elastomers, very active adhesives and selective and coatings metal-based [12]. catalysts have been successfully developed for the ROCOP of carbon dioxide and epoxides, Nevertheless, given the high thermodynamic stability and kinetic inertness of the CO2 frequentlymolecule [ 13in], the the presence environmental of a nucleophile and economical as co-cat viabilityalyst, with of thezinc ROCOP [17–25], depends chromium on [26,27], the capability cobalt [28,29],of the catalytic iron [30,31], system rare to earth avoid metals high temperatures[32,33] and aluminum and pressures [34,35] [ 14as], dominating which should metals be able,in this in field, turn, althoughto operate non-metal at ambient and temperatures organocatalyst and systems pressures have [b15een] as also well recently as controlling reported [36]. rates Similarly, and polymer very efficientmolecular bimetallic weight and system compositions have been [16]. also In this reported context, for very the activeselective and copolymerization selective metal-based of epoxides catalysts andhave carbon been successfully dioxide, in which developed the epoxide for the ROCOPis activated of carbon by one dioxide metal, while and epoxides, the attacking frequently nucleophile in the ispresence provided of aby nucleophile the second as centre co-catalyst, [37,38]. with zinc [17–25], chromium [26,27], cobalt [28,29], iron [30,31], rare earthConsidering metals [the32,33 current] and aluminumpotential large-scale [34,35] as dominating production metalsof aliphatic in this polycarbonates field, although by non-metal several companiesand organocatalyst [39–41], the systems employment have been of alsobiocompatible recently reported metals [such36]. Similarly,as zinc [42,43] very is effi highlycient bimetallicdesirable tosystems avoid havepotential been health also reported issues related for the to selective the toxici copolymerizationty of several metal-based of epoxides residues and carbon in the isolated dioxide, copolymersin which the [44,45]. epoxideIn isparticular, activated very by one active metal, zinc-based while the catalysts attacking in the nucleophile absence of is providedco-catalyst by have the beensecond described centre [ 37[17–25],38]. for polycarbonate production, some of them including alkoxide, amide, alkyl and acetateConsidering ligands the as currentnucleophile potential in a coordination-insertion large-scale production mechanism of aliphatic polycarbonates(see Chart 1). by several companiesOn the [ 39other–41], hand, the employment a key point of in biocompatible controlling both metals reactivity such as and zinc product [42,43] is selectivity highly desirable of the catalystto avoid is potential the nature health of the issues ligand related framework to the toxicity around ofthe several Lewis metal-based acidic metal residuescentre. In in this the context, isolated ourcopolymers research [44group,45]. has In particular, extensively very studied active the zinc-based coordination catalysts chemistry in the absenceof novel ofheteroscorpionate co-catalyst have ligandsbeen described [46], and [17 a– 25wide] for variety polycarbonate of applications production, have some been ofreported them including in homogenous alkoxide, catalysis. amide, alkyl For instance,and acetate we ligands have designed as nucleophile versatile in NNO-scorpionate a coordination-insertion alkyl and mechanism acetate zinc (see complexes Chart1). that behaved as single-componentOn the other hand, initiators a key point for the in controllingring-opening both co- reactivity and polymerization and product selectivityof cyclic esters of the [47–50], catalyst andis the for nature the ring-opening of the ligand frameworkcopolymerization around of the cyclohexene Lewis acidic oxide metal with centre. CO In2 [51], this respectively, context, our research as well asgroup dinuclear has extensively NNO-scorpionate studied thealkyl coordination zinc analogues chemistry that displayed of novel heteroscorpionateexcellent performances ligands in [46the], cycloadditionand a wide variety of epoxide of applications with carbon havedioxide been under reported mild and in homogenoussolvent-free conditions catalysis. [52]. For Now, instance, we takewe have on the designed challenge versatile of designing NNO-scorpionate more efficient alkyl cooperative and acetate homodinuclear zinc complexes NNO-scorpionate that behaved zinc as catalystssingle-component containing initiators thioalkoxide for theauxiliary ring-opening ligands to co- enhance and polymerization catalytic activity of for cyclic CO2 esters fixation [47 –into50], the selective production of polycarbonates under milder conditions. and for the
Recommended publications
  • Cyclohexane Oxidation Continues to Be a Challenge Ulf Schuchardt A,∗, Dilson Cardoso B, Ricardo Sercheli C, Ricardo Pereira A, Rosenira S
    Applied Catalysis A: General 211 (2001) 1–17 Review Cyclohexane oxidation continues to be a challenge Ulf Schuchardt a,∗, Dilson Cardoso b, Ricardo Sercheli c, Ricardo Pereira a, Rosenira S. da Cruz d, Mário C. Guerreiro e, Dalmo Mandelli f , Estevam V. Spinacé g, Emerson L. Pires a a Instituto de Qu´ımica, Universidade Estadual de Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil b Depto de Eng. Qu´ımica, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil c College of Chemistry, University of California, Berkeley, CA 94720, USA d Depto Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, 45650-000 Ilhéus, BA, Brazil e Universidade Federal de Lavras, Lavras, MG, Brazil f Instituto de Ciências Biológicas e Qu´ımicas, PUC-Campinas, 13020-904 Campinas, SP, Brazil g Sup. Caracterização Qu´ımica, IPEN, 05508-900 São Paulo, SP, Brazil Received 3 October 2000; received in revised form 21 December 2000; accepted 28 December 2000 Abstract Many efforts have been made to develop new catalysts to oxidize cyclohexane under mild conditions. Herein, we review the most interesting systems for this process with different oxidants such as hydrogen peroxide, tert-butyl hydroperoxide and molecular oxygen. Using H2O2, Na-GeX has been shown to be a most stable and active catalyst. Mesoporous TS-1 and Ti-MCM-41 are also stable, but the use of other metals such as Cr, V, Fe and Mo leads to leaching of the metal. Homogeneous systems based on binuclear manganese(IV) complexes have also been shown to be interesting. When t-BuOOH is used, the active systems are those phthalocyanines based on Ru, Co and Cu and polyoxometalates of dinuclear ruthenium and palladium.
    [Show full text]
  • Chem 267. Cyclohexene. (Revised 7/10). in This Experiment You Will
    Chem 267. Cyclohexene. (revised 7/10). In this experiment you will synthesize cyclohexene and purify it by distillation. You will check the purity and identity of the product by gas chromatography (GC) and infrared spectroscopy (IR). You will also do some simple chemical tests which distinguish alkenes from alkanes. Review the chapter on distillation and your notes from the distillation experiment. The "Things to Watch Out For in Distillations" listed for the distillation experiment are common to this distillation as well. As always, use care when inserting the thermometer into the thermometer adaptor. Hold the thermometer close to the adaptor and push and twist gently. Breakage could result in a serious injury. Check for frayed connectors and cracked flasks. Cyclohexene has a disagreeable odor, characteristic of volatile alkenes. Allow the apparatus to cool before disassembling it in the hood, and dispose of the wastes in the hood in the PROPER CONTAINERS (see below). Rinse the apparatus with a LITTLE acetone and dispose of that in the Nonhalogenated Liquid Waste container. CAUTION: cyclohexene is very flammable. Handle phosphoric acid with care. It is corrosive to tissue. If your skin comes into contact with phosphoric acid, wash the contaminated area immediately with water, then soap and water. Clean up spills immediately using the sodium bicarbonate in the hood. Do the Prelab Exercise on p. 334 (a model of a flow sheet is on p. 142). This is something to do for all synthesis experiments. Also always prepare a table of reactants and products such as that shown in the handout, “Sample Notebook and Report”.
    [Show full text]
  • Classification Tests for Hydrocarbons Using Solubility, Ignition, Nitration, Baeyer’S Test, Bromine Test and Basic Oxidation Test
    CLASSIFICATION TESTS FOR HYDROCARBONS USING SOLUBILITY, IGNITION, NITRATION, BAEYER’S TEST, BROMINE TEST AND BASIC OXIDATION TEST Jasher Christian Boado, Alyanna Cacas, Phoebe Calimag, Caryl Angelica Chin, Haidee Cosilet, John Francis Creencia Group 2, 2BMT, Faculty of Pharmacy, University of Santo Tomas ABSTRACT Hydrocarbons are classified as saturated, actively unsaturated, aromatic or an arene based on various classification tests involving test for solubility in concentrated H2SO4, ignition, active unsaturation using Baeyer’s test and Bromine test, aromaticity using nitration test, and basic oxidation test. This experiment aims to differentiate the intrinsic physical and the chemical properties of hydrocarbons, and to determine if it is saturated, actively unsaturated, aromatic or an arene. The sample compounds hexane, heptane, cyclohexane, cyclohexene, benzene and toluene were analyzed for their physical state in room temperature, color, and odor. Using solubility test, a drop of a sample was added cautiously into 1ml of concentrated H2SO4. Using the Baeyer’s Test and/or Bromine test in which 2 drops of 2% KmnO4 solution and 10 drops of 0.5% Br2 in CCl4 reagent, respectively, was added into 5 drops of a sample in a dry test tube, was shaken vigourously until the reagent is decolorized compared with water. Using Nitration test, 8 drops of nitrating mixture was added into 5 drops of a sample in a dry test tube, was observed for the formation of a yellow oily layer or droplet and was diluted with 20 drops of water. Using Basic Oxidation test, 8 drops of 2% KmnO4 solution and 3 drops of 10% NaOH solution was added into 4 drops of a sample in a dry test tube and was heated in a water bath for 2 minutes.
    [Show full text]
  • Chemistry 102 - Experiment 2
    Chemistry 102 - Experiment 2 http://www.miracosta.edu/home/dlr/102exp2.htm Experiment 2 Properties of Alkanes, Alkenes, Aromatic Compounds and an Alcohol In the reactions we will perform in this experiment, hexane will be used to represent the saturated hydrocarbons, cyclohexene will be used as an unsaturated hydrocarbon, and toluene, the aromatic hydrocarbon. Methanol will also be examined. You will use combustion, reactions with halogens and potassium permanganate, as well as solubility to characterize these organic compounds. As a precaution during these experiments, you should be extremely careful since hydrocarbons are extremely flammable. The Bunsen burner, or other sources of flames, will not be used in the laboratory, unless expressly directed by the instructor. The Bunsen burner, or other sources of flames, will not be used in the laboratory, unless expressly directed by the instructor (for the combustion part of this experiment, you will ignite your hydrocarbons using a match). All waste chemicals, both liquids or solids, will be disposed of in the appropriate waste containers. Methyl alcohol is not a hydrocarbon, since it contains the element oxygen, in addition to its carbon and hydrogen atoms. However, alcohols are used during many chemical processes, and like the hydrocarbons, can be used as a fuel. In fact Indy-type race cars (for the Indianapolis 500 race) often use methanol (a 1-carbon alcohol) as a fuel because it burns clean and is saver than conventional fuels because it does not burn as hot. After you do each part of this experiment, write conclusions that you can draw about each of the chemicals used.
    [Show full text]
  • Photooxidation of Cyclohexene in the Presence of SO2: SOA Yield and Chemical Composition Shijie Liu1,2,3, Long Jia2, Yongfu Xu2, Narcisse T
    Photooxidation of cyclohexene in the presence of SO2: SOA yield and chemical composition Shijie Liu1,2,3, Long Jia2, Yongfu Xu2, Narcisse T. Tsona1, Shuangshuang Ge2, Lin Du3,1,2 1Environment Research Institute, Shandong University, Jinan, 250100, China 5 2State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China 3Shenzhen Research Institute, Shandong University, Shenzhen, 518057, China Correspondence to: Lin Du ([email protected]); Yongfu Xu ([email protected]) Abstract. Secondary organic aerosol (SOA) formation from cyclohexene/NOx system with various SO2 concentrations 10 under UV light was investigated to study the effects of cyclic alkenes on the atmospheric environment in polluted urban areas. A clear decrease at first and then increase of the SOA yield was found with increasing SO2 concentrations. The lowest SOA yield was obtained when the initial SO2 concentration was in the range of 30-40 ppb, while higher SOA yield compared to that without SO2 could not be obtained until the initial SO2 concentration was higher than 85 ppb. The decreasing SOA yield might be due to the fact that the promoting effect of acid-catalyzed reactions on SOA formation was less important 15 than the inhibiting effect of decreasing OH concentration at low initial SO2 concentrations, caused by the competition reactions of OH with SO2 and cyclohexene. The competitive reaction was an important factor for SOA yield and it should not be neglected in photooxidation reactions. The composition of organic compounds in SOA was measured using several complementary techniques including Fourier transform infrared (FTIR) spectroscopy, ion chromatography (IC) and Exactive-Orbitrap mass spectrometer equipped with electro-spray interface (ESI).
    [Show full text]
  • DIELS-ALDER REACTION of 1,3-BUTADIENE and MALEIC ANHYDRIDE to PRODUCE 4-CYCLOHEXENE-CIS-1,2-DICARBOXYLIC ACID Douglas G. Balmer
    DIELS-ALDER REACTION OF 1,3-BUTADIENE AND MALEIC ANHYDRIDE TO PRODUCE 4-CYCLOHEXENE-CIS-1,2-DICARBOXYLIC ACID Douglas G. Balmer (T.A. Mike Hall) Dr. Dailey Submitted 1 August 2007 Balmer 1 Introduction : The purpose of this experiment is to carry out a Diels-Alder reaction of 1,3- butadiene and maleic anhydride to produce 4-cyclohexene-cis-1,2-dicarboxylic anhydride. This type of reaction is named in honor of the German scientists, Otto Diels and Kurt Alder, who studied the reactions of 1,3-dienes with dienophiles to produce cycloadducts. Their research earned them the 1950 Nobel Prize in chemistry. The saturation of anhydride will be tested with bromine and Bayer tests. It will also be observed that the product is in the cis position and not the trans position which indicates a concerted, single-step, reaction. Finally the product will be hydrolyzed to produce 4- cyclohexene-cis-1,2-dicarboxylic acid. Main Reaction and Mechanism : 3-sulfolene was used to synthesize 1,3-butadiene in the reaction flask. It was easier to start with solid 3-sulfolene and then decompose it, rather than starting with gaseous 1,3-butadiene (Fig.1). The dienophile, maleic anhydride, attacks the diene forming 4- cyclohexene-cis-dicarboxylic anhydride (Fig.2). The final step of the mechanism is to add water to the anhydride to produce 4-cyclohexene-cis-dicarboxylic acid (Fig.3). O 64-65oC S S + O O O FIGURE 1 The decomposition of 3-sulfolene to produce 1,3-butadiene. Balmer 2 O O + O O O O FIGURE 2 The Diels-Alder reaction between 1,3-butadiene and maleic anhydride to produce 4- cyclohexene-cis-1,2-dicarboxylic anhydride .
    [Show full text]
  • Photooxidation of Cyclohexene in the Presence of SO2: SOA Yield and Chemical Composition
    Atmos. Chem. Phys., 17, 13329–13343, 2017 https://doi.org/10.5194/acp-17-13329-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Photooxidation of cyclohexene in the presence of SO2: SOA yield and chemical composition Shijie Liu1,2,3, Long Jia2, Yongfu Xu2, Narcisse T. Tsona1, Shuangshuang Ge2, and Lin Du3,1,2 1Environment Research Institute, Shandong University, Jinan, 250100, China 2State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China 3Shenzhen Research Institute, Shandong University, Shenzhen, 518057, China Correspondence to: Lin Du ([email protected]) and Yongfu Xu ([email protected]) Received: 12 January 2017 – Discussion started: 15 February 2017 Revised: 28 September 2017 – Accepted: 8 October 2017 – Published: 9 November 2017 Abstract. Secondary organic aerosol (SOA) formation from 1 Introduction a cyclohexene = NOx system with various SO2 concentra- tions under UV light was investigated to study the effects Alkenes are widely emitted from biogenic and anthropogenic of cyclic alkenes on the atmospheric environment in polluted sources (Kesselmeier et al., 2002; Chin and Batterman, urban areas. A clear decrease at first and then an increase 2012), and their gas-phase oxidation reactions with OH, in the SOA yield was found with increasing SO2 concen- NO3, or O3 are among the most important processes in the trations. The lowest SOA yield was obtained when the ini- atmosphere (Atkinson, 1997; Stewart et al., 2013; Paulson tial SO2 concentration was in the range of 30–40 ppb, while et al., 1999).
    [Show full text]
  • Synthesis of Cyclohexene the Dehydration of Cyclohexanol
    Synthesis of Cyclohexene The Dehydration of Cyclohexanol. The general approach towards carrying out an organic reaction: (1) Write out the balanced reaction, using structural formulas. (2) Construct a table of relevant information for reactants and products – e.g., MPs, BPs, MWs, densities, hazardous properties. (3) Calculate the correct molar ratios of reactants. Convert moles to grams and milliliters. (4) Mix correct amounts of reactants, solvents, catalysts in correct order to give specific concentrations. Possibly heat or cool or irradiate with UV light, allow to react for necessary amount of time, possibly follow reaction progress using chromatography (e.g., TLC, GC) or spectroscopy (e.g., IR, NMR). (5) After reaction is complete, the reaction mixture is usually a complex mixture of desired product(s), byproducts, unreacted starting materials, solvents, and catalyst. Product may be light, heat, or air (O2) sensitive. (6) Separation and purification steps (so-called reaction work-up). Some combination of extractions, distillations, recrystallizations, chromatography, etc are used for the work-up. (7) Identify product(s) using spectroscopy (IR, NMR, etc), chromatography (GC, TLC, etc), physical properties (MP, BP, etc), and occasionally chemical tests. Cyclohexene. In the presence of a strong acid, an alcohol can be dehydrated to form an alkene. The acid used in this experiment is 85% phosphoric acid and the alcohol is cyclohexanol. The phosphoric acid is a catalyst and as such increases the rate of reaction but does not affect the overall stoichiometry. It can be seen from the balanced reaction that 1 mole of alcohol produces 1 mole of alkene. The theoretical yield of alkene in moles is therefore equal to the number of moles of alcohol used.
    [Show full text]
  • Organic Reactions VOLUME IV
    Organic Reactions VOLUME IV EDITORIAL BOARD ROGER ADAMS, Editor-in-Chief WERNER E. BACHMANN LOUIS F. FIESER A. H. BLATT JOHN R. JOHNSON HAROLD R. SNYDER ASSOCIATE EDITORS JAMES CASON MILTON C. KLOETZEL WILLIAM S. EMERSON S. M. MCELVAIN H. L. HOLMES ERICH MOSETTIG WALTER S. IDE DAVID TODD NEW YORK JOHN WILEY & SONS, INC. LONDON: CHAPMAN & HALL, LIMITED COPYRIGHT, 1948 BY ROGER ADAMS All Rights Reserved This book or any part thereof must not be reproduced in any form without the written permission of the ptihlisher. PRINTED IN THE UNITED STATES OF AMERICA PREFACE TO THE SERIES In the course of nearly every program of research in organic chemistry the investigator finds it necessary to use several of the better-known synthetic reactions. To discover the optimum conditions for the appli­ cation of even the most familiar one to a compound not previously subjected to the reaction often requires an extensive search of the liter­ ature; even then a series of experiments may be necessary. When the results of the investigation are published, the synthesis, which may have required months of work, is usually described without comment. The background of knowledge and experience gained in the literature search and experimentation is thus lost to those who subsequently have occasion to apply the general method. The student of preparative organic chemistry faces similar difficulties. The textbooks and labora­ tory manuals furnish numerous examples of the application of various syntheses, but only rarely do they convey an accurate conception of the scope and usefulness of the processes. For many years American organic chemists have discussed these problems.
    [Show full text]
  • Adipic Acid Route: Oxidation of Cyclohexene Vs. Cyclohexane
    catalysts Article Adipic Acid Route: Oxidation of Cyclohexene vs. Cyclohexane Ana P. C. Ribeiro 1 , Elisa Spada 2, Roberta Bertani 2 and Luísa M. D. R. S. Martins 1,* 1 Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; [email protected] 2 Department of Industrial Engineering, University of Padova, 35122 Padova, Italy; [email protected] (E.S.); [email protected] (R.B.) * Correspondence: [email protected]; Tel.: +351-218-419-389 Received: 20 November 2020; Accepted: 8 December 2020; Published: 10 December 2020 Abstract: A cleaner alternative to the current inefficient oxidation of cyclohexane to adipic acid is presented. Direct oxidation of neat cyclohexene by aq. hydrogen peroxide to adipic acid is selectively achieved in good yield (46%), in the presence of the recyclable C-homoscorpionate iron(II) complex 3 [FeCl2{κ -HC(pz)3}] (pz = pyrazol-1-yl) and microwave irradiation, by a nitrous oxide-free protocol. Keywords: cyclohexene; adipic acid; oxidation; nitrous oxide; C-scorpionate; iron; microwave; ionic liquid; recyclable 1. Introduction Adipic acid (AA) is a highly relevant commodity produced at a large scale (over 3.5 mio metric tons/year and growing by ca. 5%/year) [1,2] worldwide, as it constitutes a building block for several industrial processes. It is mostly used for the synthesis of Nylon-6,6 polyamide; therefore, the rising demand for engineered plastics requires increased production of AA. Currently, adipic acid is mainly obtained by an inefficient and environmentally harmful two-step process [1,3] involving catalytic cyclohexane oxidation to cyclohexanol and cyclohexanone mixture followed by its oxidation with nitric acid.
    [Show full text]
  • BROMINE WATER PRAC REPORT Introduction
    Daniel Hu BROMINE WATER PRAC REPORT Introduction: • Because almost all alkenes add bromine, this reaction is often used as a test for the presence of unsaturation (multiple bonds). • Used to differentiate between an alkane and alkene/alkyne (saturated hydrocarbon/unsaturated hydrocarbon). • If the deep red/brown colour of Br2 disappears, a double or triple bond is present • Bromine water is an equilibrium mixture of bromine and hypobromous acid Aim To compare the reactivity of cyclohexene with the corresponding alkane, cyclohexane, in bromine water Hypothesis Cyclohexane will react slowly with bromine water, and no decolourisation of bromine water will occur. Cyclohexene will react quickly and spontaneously with bromine water, and bromine water will be decolourised from brown to colourless. Materials: • Cyclohexene • Cyclohexane • Bromine water in dropper bottles • Test-tube rack • Droppers • 2 test tubes • Fume cupboard • Darkened, well-ventilated room Risk Assessment: Compound Hazard Precautions Reasons for precaution Bromine (aq) Skin/eye irritant Handling bromine Can release toxic Lung sensitiser water should be done fumes, and strong in a fume cupboard or odours so caution performed in a well- must be taken ventilated area, wearing appropriate Prevent toxic safety gear such as substances being goggles, gloves and lab inhaled, ingested, coat. In the event of splashing into eyes eye or skin contact, the or contacting the area should be flushed skin with lots of water. Do not pour down sink, dispose in inorganic waste bottle Daniel Hu Toxic substances will enter the environment and cause food poisoning. Cyclohexane, Skin/eye irritant The same precautions Can release toxic Cyclohexene Flammable should be followed for fumes, strong Toxic the safe handling of odours, may cyclohexane and combust cyclohexene, as well as keeping them away from sources of ignition since they are both volatile and flammable (keeping a working fire extinguisher close by).
    [Show full text]
  • Aromaticity and Aromatic Compounds
    Aromaticity Benzene- highly unsaturated compound (4 degrees of unsaturation). Resonance structures are also called Kekule' structures: or or Benzene is an aromatic compound- low H/C ratio and has a fragrance Benzene does not behave like an unsaturated compound: does not add Br2 or [ox] with KMnO4 does not add water does not add H2 except under forcing conditions Br2 CH2Cl2 H+ no reaction H2O H2 Pd MeOH Also KMnO4 does not react with benzene. Benzene does react with Br2 in the presence of a catalyst but gives substitution, not addition Br no Br2 Br2 reaction CH2Cl2 FeBr3 Tendency to undergo substitution instead of addition is another characteristic of aromatic compounds. Cyclooctatetraene adds Br2 readily and it reacts with KMnO4 cyclooctatetraene is not aromatic Br Br2 Br 1 equiv. + conjugate isomers cyclooctatetraene Alternating single and double bonds in a ring is not necessarily aromatic. Page 1 Aromaticity Stability of Benzene- from heats of hydrogenation 1,3,5-cyclohexatriene + H2 E resonance energy due to conjugation ΔH° benzene 8 kJ -360 kJ/mol predicted cyclohexene ΔH° -208 kJ/mol ΔH° -120 kJ/mol -240 kJ/mol -232 kJ/mol Resonance energy = (-360 kJ) - (-208 kJ) = 152 kJ Resonance energy- difference between energy released for hydrogenation of benzene and the predicted value for hydrogenation of 1,3,5 cyclohexatriene Resonance approach and M.O. approach ¾ Resonance theory shows that benzene has two Lewis structures double-headed arrow is used (not equilibrium arrows!) not an equilibrium! More than one equivalent resonance structure implies resonance stabilization. C-C bond length is 1.39 angstroms Approximately halfway between C-C single bond (1.47) and C=C bond (1.33) Page 2 Aromaticity ¾ M.O Approach … we combine p orbitals … Each carbon is sp2 hybridized so the C-C-C bond angles are all 120° Therefore, benzene is planar.
    [Show full text]