Preparatele Anticorpilor Monoclonali În Oncologie

Total Page:16

File Type:pdf, Size:1020Kb

Preparatele Anticorpilor Monoclonali În Oncologie 224 Buletinul AȘM CZU: 616-006.3-097+615.277.3 PREPARATELE ANTICORPILOR MONOCLONALI ÎN ONCOLOGIE BACINSCHI N., CARACAȘ A., VASILACHE E., MIHALACHI-ANGHEL M., CHIANU M. Catedra de farmacologie și farmacologie clinică Universitatea de Stat de Medicină și Farmacie „Nicolae Testemițanu”, Chișinău, Republica Moldova Rezumat Introducere. Terapia anticanceroasă clasică (radioterapie, chirurgie și chimioterapie sistemică), deși a cunoscut o evoluție în ascensiune permanentă, prezintă mai multe dezavantaje ce limitează termenii efectuării acesteia și eficacitatea clinică. Anticorpii monoclonali, ca o clasă majoră de preparate pentru tratamentul maladiilor oncologice, prin proprietă- țile farmacologice constituie o strategie indiscutabilă a conduitei terapeutice. Scop. Analiza și sistematizarea preparatelor anticorpilor monoclonali utilizate în tratamentul patologiei oncologice. Materiale și metode. Au fost selectate și analizate articolele din baza de date PubMed după cuvintele-cheie „anticor- pi monoclonali”, „oncologie”, „antitumorale”. Rezultate. S-au selectat preparatele anticorpilor monoclonali disponibile pe piața farmaceutică. S-au evidențiat an- ticorpi monoclonali simpli sau neconjugați (participă nemijlocit în realizarea efectului terapeutic) și conjugați (efectul curativ este determinat de substanțele atașate la anticorp - particule radioactive, citostatice, toxine etc.). S-a constatat că anticorpii monoclonali simpli acționează prin: cuplarea cu antigenii exprimați pe celulele canceroase; inițierea mecanis- melor răspunsului imun natural al organismului care exercită efect citotoxic; interacțiunea cu antigenii ce asigură prolife- rarea sau creșterea tumorii. Mecanismele acțiunii citotoxice a anticorpilor monoclonali, cauzate de interacțiunea specifică cu receptorii antigenilor pe celulele tumorale, se pot reduce la: activarea componentelor complementului; inducerea citotoxicității anticorp-dependente; inducerea apoptozei; blocarea receptorilor și întreruperea lanțurilor de semnalizare intracelulară; inhibarea moleculelor biologic active pentru realizarea fenotipului tumoral; inducerea răspunsului idio- sau antiidiotipic; inhibarea creșterii tumorii prin diminuarea formării vaselor noi etc. Concluzii. Preparatele anticorpilor monoclonali prin mecanismele și acțiunea țintită, influența asupra verigilor sis- temului imun și ciclului celular, utilizarea biotehnologiilor contemporane se consideră agenți antitumorali promițători în medicina personalizată a cancerului. Cuvinte-cheie: anticorpi monoclonali, activitate antitumorală, maladii oncologice, imunoglobuline, antigeni. Summary: Monoclonal antibody drugs in oncology. Introduction. Classical anticancer therapy (radiotherapy, surgery and systemic chemotherapy), although it has evolved in permanent ascension, has several disadvantages that limit the terms of its use and clinical efficacy. Monoclonal antibodies, as a major class of drugs for the treatment of oncological diseases, through their pharmacological properties represents an unquestionable strategy of therapeutic approach. Aim. Analysis and systematization of monoclonal antibody drugs used in the treatment of oncological diseases. Materials and methods. Were selected and analyzed the articles from the PubMed database according to the key- words „monoclonal antibodies”, „oncology”, „antitumor”. Results. Were selected the monoclonal antibody drugs available on the pharmaceutical market. Simple or unconju- gated monoclonal antibodies (directly involved in achieving the therapeutic effect) and conjugated (the therapeutic effect is determined by the substances attached to the antibody - radioactive particles, cytostatics, toxins, etc.) were highlighted. It has been found that simple monoclonal antibodies act by: coupling with antigens on cancer cells; initiating the mech- anisms of the body’s natural immune response that exerts a cytotoxic effect; interaction with antigens that assures tumor proliferation or tumor growth. The mechanisms of cytotoxic action of monoclonal antibodies, caused by the specific interaction with antigen receptors on tumor cells, can be reduced to: activation of complement components; induction of antibody-dependent cytotoxicity; induction of apoptosis; blocking receptors and disrupting intracellular signaling chains; inhibition of biologically active molecules to achieve the tumor phenotype; induction of the idio- or anti-idiotypic re- sponse; inhibiting tumor growth by reducing the formation of new vessels, etc. Conclusions. Monoclonal antibodies drugs through the mechanisms and targets of action, the influence on the links of the immune system and the cell cycle, the use of contemporary biotechnologies are considered promising antitumor agents in personalized cancer therapy. Key-words: monoclonal antibodies, antitumor activity, oncological diseases, immunoglobulins, antigens. Резюме: Препараты моноклональных антител в онкологии. Введение. Классическая противоопухолевая терапия (лучевая терапия, хирургия и системная химиотерапия), несмотря на постоянное развитие, имеет ряд недостатков, ограничивающих продолжительность проведения и Științe Medicale 225 клиническую эффективность. Моноклональные антитела, как основной класс препаратов для лечения онкологи- ческих заболеваний, благодаря своим фармакологическим свойствам представляют бесспорную стратегию тера- певтического воздействия. Цель. Анализ и систематизация препаратов моноклональных антител, используемых при лечении онкологи- ческой патологии. Материалы и методы. Из базы данных PubMed были выбраны и проанализированы статьи по ключевым словам «моноклональные антитела», «онкология», «противоопухолевые». Результаты. Были систематизированы препараты моноклональных антител, доступные на фармацевтическом рынке. Различают простые или неконъюгированные (непосредственно участвующие в достижении терапевтическо- го эффекта) и конъюгированные моноклональные антитела (лечебный эффект определяется веществами, присоеди- ненными к антителу - радиоактивными частицами, цитостатиками, токсинами и т. д.). Показано, что простые мо- ноклональные антитела реализуют свое действие путем: взаимодействия с антигенами раковых клеток; активации механизмов естественного иммунного ответа организма, оказывающего цитотоксический эффект; взаимодействия с антигенами, обеспечивающими пролиферацию или рост опухоли. Механизмы цитотоксического действия монокло- нальных антител, вызванные специфическим взаимодействием с рецепторами антигенов на опухолевых клетках, могут быть обусловлены: активацией компонентов комплемента; индукцией антитело-зависимой цитотоксичности; индукцией апоптоза; блокированием рецепторов и нарушением внутриклеточных сигнальных путей; ингибирова- нием биологически активных молекул для достижения фенотипа опухоли; индукцией идио- или антиидиотипиче- ского ответа; подавлением роста опухоли за счет уменьшения образования новых сосудов и т. д. Выводы. На основании механизмов и избирательного действия, влияния на звенья иммунной системы и фазы клеточного цикла, использовании современных биотехнологий, препараты моноклональных антител явля- ются перспективными противоопухолевыми средствами в персонализированной терапии рака. Ключевые слова: моноклональные антитела, противоопухолевая активность, онкологические заболевания, иммуноглобулины, антигены. Cancerul este a doua patologie ca incidență, circa lecule mari, sunt indiscutabile. Inițial AMC au țintit 18 milioane de cazuri noi, și cauză de deces, 9,5 mili- citokinele solubile, iar în prezent acționează și asupra oane anual, la nivel mondial. Se estimează, că la nivel receptorilor membranari, posedă un timp de înjumă- mondial în anul 2030 se vor depista până la 24 de tățire crescut și o acțiune mai complexă. Principiile milioane de cazuri noi. Actualmente terapia antican- farmacologiei au permis dezvoltarea unor molecule ceroasă clasică (radioterapie, chirurgie și chimiotera- terapeutice mici cu afinitate înaltă, selective și poten- pie sistemică), care cunoaște o dezvoltare continua în te, cu reducerea efectelor în afara țintei și interacțiu- ultimele decenii, prezintă un șir de dezavantaje ce le nilor medicamentoase. Concepte precum agonismul limitează tolerabilitatea și eficacitatea clinică. Cele complet și parțial, selectivitatea funcțională și modu- mai multe terapii anticanceroase până în prezent au lația alosterică au devenit din ce în ce mai relevante în fost concepute să interfereze cu factorii moleculari ai caracterizarea terapiei cu AMC. De rând cu AMC cu tumorigenezei, necesari pentru creșterea și progresia țintă unică s-au dezvoltat anticorpi conjugați, peptide tumorii. Chimioterapiile citotoxice existente de obicei terapeutice sintetice, ,,schele” alternative de AMC, vizează celulele canceroase cu proliferare rapidă îm- proteine de fuziune și AMC bi- și multi-specifici. An- piedicând diviziunea celulară prin influența la diferite ticorpii monoclonali au mai multe beneficii, precum etape ale ciclului celular. Totuși, acestea acționează mai puține efecte adverse, mai puține interacțiuni preponderant nespecific și afectează celule sănătoase medicamentoase, specificitate mai mare și eficacitate cu multiplicare rapidă, precum măduva osoasă, pro- potențial crescută prin terapie țintită [4, 12]. ducând reacții adverse severe. Obiectivul primordial Elaborarea, cercetarea și promovarea preparate- al terapiilor țintite este de a asigura o selectivitate mai lor anticorpilor monoclonali pentru tratamentul unei mare pentru a reduce efectele adverse [2, 3, 10]. game variate de maladii, inclusiv în patologia
Recommended publications
  • The Evolution of Antibodies Into Versatile Tumor-Targeting Agents
    Vol. 11, 129–138, January 1, 2005 Clinical Cancer Research 129 The Evolution of Antibodies into Versatile Tumor-Targeting Agents Michael Z. Lin,1 Michael A. Teitell,2 cancer is an old idea, often credited to Paul Ehrlich and William 1 Coley over 100 years ago, a time that predates our understanding and Gary J. Schiller of the cellular and molecular components of the immune system. 1 2 Departments of Medicine and Pathology and Laboratory Medicine, It was the elucidation of mechanisms of immunity and the David Geffen School of Medicine at University of California at introduction of a theory of cancer immunosurveillance by Lewis Los Angeles, Los Angeles, California Thomas and MacFarlane Burnet in the 1960s, however, that gave rise to the modern concept of using the adaptive immune system ABSTRACT to recognize and eliminate tumor cells whereas sparing normal In recent years, monoclonal antibodies have become tissue. After decades of waxing and waning interest, the idea of important weapons in the arsenal of anticancer drugs, and in immunotherapy has recently achieved widespread acceptance select cases are now the drugs of choice due to their favor- (1), in large part owing to the successful introduction within the able toxicity profiles. Originally developed to confer passive last decade of antibody-based cancer therapies into the clinic. immunity against tumor-specific antigens, clinical uses of Having accumulated several years of experience with anticancer monoclonal antibodies are expanding to include growth fac- antibodies, researchers are now in a position evaluate these first tor sequestration, signal transduction modulation, and tumor- examples of immunotherapeutic drugs, looking back to relate specific drug delivery.
    [Show full text]
  • Soluble Epcam Levels in Ascites Correlate with Positive Cytology And
    Seeber et al. BMC Cancer (2015) 15:372 DOI 10.1186/s12885-015-1371-1 RESEARCH ARTICLE Open Access Soluble EpCAM levels in ascites correlate with positive cytology and neutralize catumaxomab activity in vitro Andreas Seeber1,2,3†, Agnieszka Martowicz1,4†, Gilbert Spizzo1,2,5, Thomas Buratti6, Peter Obrist7, Dominic Fong1,5, Guenther Gastl3 and Gerold Untergasser1,2,3* Abstract Background: EpCAM is highly expressed on membrane of epithelial tumor cells and has been detected as soluble/ secreted (sEpCAM) in serum of cancer patients. In this study we established an ELISA for in vitro diagnostics to measure sEpCAM concentrations in ascites. Moreover, we evaluated the influence of sEpCAM levels on catumaxomab (antibody) - dependent cellular cytotoxicity (ADCC). Methods: Ascites specimens from cancer patients with positive (C+, n = 49) and negative (C-, n = 22) cytology and ascites of patients with liver cirrhosis (LC, n = 31) were collected. All cell-free plasma samples were analyzed for sEpCAM levels with a sandwich ELISA system established and validated by a human recombinant EpCAM standard for measurements in ascites as biological matrix. In addition, we evaluated effects of different sEpCAM concentrations on catumaxomab-dependent cell-mediated cytotoxicity (ADCC) with human peripheral blood mononuclear cells (PBMNCs) and human tumor cells. Results: Our ELISA showed a high specificity for secreted EpCAM as determined by control HEK293FT cell lines stably expressing intracellular (EpICD), extracellular (EpEX) and the full-length protein (EpCAM) as fusion proteins. The lower limit of quantification was 200 pg/mL and the linear quantification range up to 5,000 pg/mL in ascites as biological matrix.
    [Show full text]
  • Monoclonal Antibody Therapy with Edrecolomab in Breast Cancer Patients: Monitoring of Elimination of Disseminated Cytokeratin- Positive Tumor Cells in Bone Marrow1
    Vol. 5, 3999–4004, December 1999 Clinical Cancer Research 3999 Monoclonal Antibody Therapy with Edrecolomab in Breast Cancer Patients: Monitoring of Elimination of Disseminated Cytokeratin- positive Tumor Cells in Bone Marrow1 Stephan Braun,2 Florian Hepp, mor cells in bone marrow and typed EpCAM expression. Christina R. M. Kentenich, Wolfgang Janni, This allowed us to monitor the cytotoxic elimination of such cells after Edrecolomab application. Selection of EpCAM2/ Klaus Pantel, Gert Riethmu¨ller, Fritz Willgeroth, 1 CK tumor clones showed that further antibodies directed and Harald L. Sommer against tumor-associated antigens are warranted to improve I. Frauenklinik, Klinikum Innenstadt [S. B., F. H., C. R. M. K., W. J., the efficacy of monospecific approaches. F. W., H. L. S.], and Institute of Immunology [G. R.], Ludwig- Maximilians-Universita¨t, D-80337 Munich, and Frauenklinik, Universita¨tsklinikum Eppendorf, D-20251 Hamburg [K. P.], Germany INTRODUCTION A reliable indication of the efficacy of adjuvant therapy requires trials with large numbers of patients observed for ABSTRACT several years (1), especially in breast cancer, because residual Despite current advances in antibody-based immuno- tumor cells may exert their influence on survival at 10 years or therapy of breast and colorectal cancer, we have recently later (2). Because adjuvant treatment usually is delivered to shown that the actual target cells (e.g., tumor cells dissem- patients with clinically occult micrometastatic disease after the inated to bone marrow) may express a heterogeneous pat- successful resection of the primary tumor, the efficacy of ther- tern of the potential target antigens. Tumor antigen heter- apy can be only assessed retrospectively from the rate of disease- ogeneity may therefore represent an important limitation of free survival.
    [Show full text]
  • In Malignant Ascites Predicts Poor Overall Survival in Patients Treated with Catumaxomab
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 28 Detection of soluble EpCAM (sEpCAM) in malignant ascites predicts poor overall survival in patients treated with catumaxomab Andreas Seeber1,2,3, Ioana Braicu4, Gerold Untergasser1,2,3, Mani Nassir4, Dominic Fong1,2,3,5, Laura Botta6, Guenther Gastl1, Heidi Fiegl7, Alain Zeimet7, Jalid Sehouli4, Gilbert Spizzo1,2,3,5 1Department of Haematology and Oncology, Innsbruck Medical University, Innsbruck, Austria 2Tyrolean Cancer Research Institute, Innsbruck, Austria 3Oncotyrol – Center for Personalized Cancer Medicine, Innsbruck, Austria 4European Competence Center for Ovarian Cancer, Charité Berlin, Berlin, Germany 5Haemato-Oncological Day Hospital, Hospital of Merano, Merano, Italy 6Evaluative Epidemiology Unit, Fondazione IRCSS “Istituto Nazionale dei Tumori”, Milan, Italy 7Department of Gynaecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria Correspondence to: Andreas Seeber, e-mail: [email protected] Keywords: EpCAM, soluble EpCAM, catumaxomab, ascites, ovarian cancer Received: May 10, 2015 Accepted: June 29, 2015 Published: July 10, 2015 ABSTRACT EpCAM is an attractive target for cancer therapy and the EpCAM-specific antibody catumaxomab has been used for intraperitoneal treatment of EpCAM-positive cancer patients with malignant ascites. New prognostic markers are necessary to select patients that mostly benefit from catumaxomab. Recent data showed that soluble EpCAM (sEpCAM) is capable to block the effect of catumaxomab in vitro. This exploratory retrospective analysis was performed on archived ascites samples to evaluate the predictive role of sEpCAM in catumaxomab-treated patients. Sixty-six catumaxomab-treated patients with an available archived ascites sample were included in this study and tested for sEpCAM by sandwich ELISA. All probes were sampled before treatment start and all patients received at least one catumaxomab infusion.
    [Show full text]
  • Antibodies for the Treatment of Brain Metastases, a Dream Or a Reality?
    pharmaceutics Review Antibodies for the Treatment of Brain Metastases, a Dream or a Reality? Marco Cavaco, Diana Gaspar, Miguel ARB Castanho * and Vera Neves * Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal * Correspondence: [email protected] (M.A.R.B.C.); [email protected] (V.N.) Received: 19 November 2019; Accepted: 28 December 2019; Published: 13 January 2020 Abstract: The incidence of brain metastases (BM) in cancer patients is increasing. After diagnosis, overall survival (OS) is poor, elicited by the lack of an effective treatment. Monoclonal antibody (mAb)-based therapy has achieved remarkable success in treating both hematologic and non-central-nervous system (CNS) tumors due to their inherent targeting specificity. However, the use of mAbs in the treatment of CNS tumors is restricted by the blood–brain barrier (BBB) that hinders the delivery of either small-molecules drugs (sMDs) or therapeutic proteins (TPs). To overcome this limitation, active research is focused on the development of strategies to deliver TPs and increase their concentration in the brain. Yet, their molecular weight and hydrophilic nature turn this task into a challenge. The use of BBB peptide shuttles is an elegant strategy. They explore either receptor-mediated transcytosis (RMT) or adsorptive-mediated transcytosis (AMT) to cross the BBB. The latter is preferable since it avoids enzymatic degradation, receptor saturation, and competition with natural receptor substrates, which reduces adverse events. Therefore, the combination of mAbs properties (e.g., selectivity and long half-life) with BBB peptide shuttles (e.g., BBB translocation and delivery into the brain) turns the therapeutic conjugate in a valid approach to safely overcome the BBB and efficiently eliminate metastatic brain cells.
    [Show full text]
  • Ncomms5764.Pdf
    ARTICLE Received 11 Apr 2014 | Accepted 21 Jul 2014 | Published 28 Aug 2014 DOI: 10.1038/ncomms5764 Crystal structure and its bearing towards an understanding of key biological functions of EpCAM Miha Pavsˇicˇ1, Gregor Guncˇar1, Kristina Djinovic´-Carugo1,2 & Brigita Lenarcˇicˇ1,3 EpCAM (epithelial cell adhesion molecule), a stem and carcinoma cell marker, is a cell surface protein involved in homotypic cell–cell adhesion via intercellular oligomerization and proliferative signalling via proteolytic cleavage. Despite its use as a diagnostic marker and being a drug target, structural details of this conserved vertebrate-exclusive protein remain unknown. Here we present the crystal structure of a heart-shaped dimer of the extracellular part of human EpCAM. The structure represents a cis-dimer that would form at cell surfaces and may provide the necessary structural foundation for the proposed EpCAM intercellular trans-tetramerization mediated by a membrane-distal region. By combining biochemical, biological and structural data on EpCAM, we show how proteolytic processing at various sites could influence structural integrity, oligomeric state and associated functionality of the molecule. We also describe the epitopes of this therapeutically important protein and explain the antigenicity of its regions. 1 Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecˇna pot 113, Ljubljana SI-1000, Slovenia. 2 Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna AT-1030, Austria. 3 Department of Biochemistry, Molecular and Structural Biology, Institute Jozˇef Stefan, Jamova 39, Ljubljana SI-1000, Slovenia. Correspondence and requests for materials should be addressed to M.P.
    [Show full text]
  • Characterization of Bis20x3, a Bi-Specific Antibody Activating and Retargeting T-Cells to CD20-Positive B-Cells
    British Journal of Cancer (2001) 84(8), 1115–1121 © 2001 Cancer Research Campaign doi: 10.1054/ bjoc.2001.1707, available online at http://www.idealibrary.com on http://www.bjcancer.com Characterization of BIS20x3, a bi-specific antibody activating and retargeting T-cells to CD20-positive B-cells S Withoff1, MNA Bijman1, AJ Stel1, L Delahaye1, A Calogero1, MWA de Jonge2, BJ Kroesen1 and L de Leij1 1University Hospital Groningen, Department of Pathology and Laboratory Medicine, Section Medical Biology – Laboratory Tumor Immunology, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; 2IQ Corporation, Zernikepark 6b, 9747 AN Groningen, The Netherlands Summary This paper describes a bi-specific antibody, which was called BIS20x3. It retargets CD3ε-positive cells (T-cells) to CD20-positive cells and was obtained by hybrid–hybridoma fusion. BIS20x3 could be isolated readily from quadroma culture supernatant and retained all the signalling characteristics associated with both of its chains. Cross-linking of BIS20x3 on Ramos cells leads to DNA fragmentation percentages similar to those obtained after Rituximab-cross-linking. Cross-linking of BIS20x3 on T-cells using cross-linking F(ab′)2-fragments induced T-cell activation. Indirect cross-linking of T-cell-bound BIS20x3 via Ramos cells hyper-activated the T-cells. Furthermore, it was demonstrated that BIS20x3 effectively re-targets T-cells to B-cells, leading to high B-cell cytotoxicity. The results presented in this paper show that BIS20x3 is fully functional in retargeting T-cells to B-cells and suggest that B-cell lymphomas may represent ideal targets for T-cell retargeting bi-specific antibodies, because the retargeted T-cell is maximally stimulated in the presence of B-cells.
    [Show full text]
  • Paul Sondel MD Phd University of Wisconsin Madison Antibody Therapy
    Antibody Therapy: Biology, Immunocytokines, and Hematologic Malignancy iSBTc Primer Boston, November 1, 2007 Paul Sondel MD PhD University of Wisconsin Madison DISCLOSURE STATEMENT P. Sondel has disclosed the information listed below. Any real or apparent conflict of interest related to the content of the presentation has been resolved. Organization Affiliation EMD-Pharmaceuticals Scientific Advisor Quintesence Scientific Advisor Medimmune Scientific Advisor NKT cell 2. Innate Immunity γδT Cell NK cell PMN MΦ Endothelium 1.T-cell Recognition Tumor Cell Monoclonal 3. Passive Antibody Immunity T cell Fibroblast TGF-β MUC16 VEGF NK cell T Cell APC 4. Tumor Induced Treg cell 5. Cellular Therapy Immune Suppression Making Monoclonal Antibody (mAb) Abbas and Lichtman:2003 Underlying principle of mAb therapy SELECTIVE recognition of tumor cells, but not most normal cells by therapeutic mAb Clinically Relevant mAb target antigens LEUKEMIA__ SOLID TUMOR CD-20 B GD-2 NBL/Mel CD-19 B Her2 Breast CD-5 T EpCAM AdenoCA From Genes to Antibodies From S. Gillies Antibody Engineering • First step - development of monoclonal antibodies – Fusion of antibody-producing B cell with myeloma – Results in immortalized monospecific Ab-producing cell line • Second step - ability to clone and re-express Abs – Initially done with cloned, rearranged genes from hybridomas – Parallel work with isolated Fab fragments in bacteria • Third step - re-engineering for desired properties – Reducing immunogenicity of mouse antibodies – Tailoring size and half-life for specific need – Adding or removing functions • Engineered diversity – phage display approach Chimeric Mouse-human antibodies V VH Human CH L Human CL Fragment switched Fragment switched Mouse-derived e.g.
    [Show full text]
  • INN Working Document 05.179 Update 2011
    INN Working Document 05.179 Update 2011 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 2011 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Essential Medicines and Pharmaceutical Policies (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) © World Health Organization 2011 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • NETTER, Jr., Robert, C. Et Al.; Dann, Dorf- (21) International Application
    ll ( (51) International Patent Classification: (74) Agent: NETTER, Jr., Robert, C. et al.; Dann, Dorf- C07K 16/28 (2006.01) man, Herrell and Skillman, 1601 Market Street, Suite 2400, Philadelphia, PA 19103-2307 (US). (21) International Application Number: PCT/US2020/030354 (81) Designated States (unless otherwise indicated, for every kind of national protection av ailable) . AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 29 April 2020 (29.04.2020) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (26) Publication Language: English KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 62/840,465 30 April 2019 (30.04.2019) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, (71) Applicants: INSTITUTE FOR CANCER RESEARCH TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW. D/B/A THE RESEARCH INSTITUTE OF FOX CHASE CANCER CENTER [US/US]; 333 Cottman Av¬ (84) Designated States (unless otherwise indicated, for every enue, Philadelphia, PA 191 11-2497 (US). UNIVERSTIY kind of regional protection available) . ARIPO (BW, GH, OF KANSAS [US/US]; 245 Strong Hall, 1450 Jayhawk GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, Boulevard, Lawrence, KS 66045 (US).
    [Show full text]
  • Education Forum-Monoclonal Antibodies: Pharmacological
    Educational Forum Monoclonal antibodies: Pharmacological relevance Jasleen Kaur, D.K. Badyal, P.P. Khosla ABSTRACT Monoclonal antibodies (MAbs), a new class of biological agents, are used these days in therapeutics and diagnosis. MAbs also labeled as ‘magic bullets’, are highly specific Department of Pharmacology, antibodies produced by a clone of single hybrid cells formed in the laboratory by fusion Christian Medical College and of B cell with the tumor cell. The hybridoma formed yields higher amount of MAbs. Hospital, Ludhiana, India MAbs can be produced in vitro and in vivo. Animals are utilized to produce MAbs, but these antibodies are associated with immunogenic and ethical problems. Of late, Received: 12.7.2006 Revised: 29.8.2006 recombinant DNA technology, genetic engineering,phage display and transgenic animals Accepted: 26.9.2006 are used to produce humanized MAbs or pure human MAbs, which have fewer adverse effects. MAbs alone or conjugated with drugs, toxins, or radioactive atoms are used for Correspondence to: treatment of cancer, autoimmune disorders, graft rejections, infectious diseases, asthma, Jasleen Kaur and various cardiovascular disorders. New MAbs are being developed which are more E-mail: [email protected] specific and less toxic. KEY WORDS: Antibodies, biological response modifiers, cancer chemotherapy, immunosuppressant, immunotherapeutics..com). Introduction killer cells, and so on, when injected into patients, home in on Ags that grow on the surface of killer cells. Therefore, MAbs Humans and animals have the ability to make antibodies.medknow are also labeled as biological response modifiers. Since they (Abs) to recognize any antigenic determinant (epitope) and to affect the immune system, they are also called even discriminate between similar epitopes.
    [Show full text]