Small in Size Only

Total Page:16

File Type:pdf, Size:1020Kb

Small in Size Only editorial Small in size only Planets and their systems have long held the spotlight, but researchers, space agencies and even the private sector and the public have turned their attention to small bodies. stronomy in 2019 started with a collaboration), a spacecraft that will lurk at System, compositionally, structurally bang: the flyby of the farthest body a Lagrange point until a special target — a and dynamically. Aever visited by a human artefact. The pristine comet, or maybe an interstellar Beyond science, the community is also close approach of the New Horizons probe object — will pass by. The probe will then motivated by planetary defence, for which to the recently named Arrokoth, a contact be ready to approach it and perform close we need to characterize near-Earth asteroids binary Kuiper belt object, allowed scientists observations. Other agencies are also active: in order to understand what can be done to to look for the first time at a pristine body, JAXA has laid down a full small-bodies avert a catastrophic impact on our planet. probably undisturbed for the past 4 billion programme (see the Comment by Masaki Both NASA and ESA are stepping up their years or so. Fujimoto and Elizabeth Tasker) and China efforts, which translates into the approval We are living in a golden age for small announced plans to launch in 2022 an of new missions. Two spacecraft that had bodies, as various space exploration events ambitious mission involving flybys of an been previously rejected got approved this of 2019 clearly show. A major theme of the asteroid and a comet, with sample return year. ESA’s Hera, a probe that will look year was sample return. As discussed in a from the asteroid. at the aftermath of the impact created previous Editorial, sample return is more One of the main reasons that small by the NASA mission DART on asteroid than a curiosity or a technical achievement. bodies have become so popular is their Didymos’s moon, got funded in the recent Simple remote sensing or in situ analysis are extreme versatility in terms of science — November 2019 ministerial conference, not able to provide the same level of exemplified by the content in this issue Space19+. The combination of DART and scientific information. NASA’s OSIRIS-REx of Nature Astronomy. In a pair of Letters, Hera, a project called AIDA, will assess our team published their first results from the Johnson et al. and Zhu et al. study specific capability to deflect asteroids in case we monitoring of asteroid Bennu and JAXA’s phenomena that affected the formation need to. From NASA’s side, the Near-Earth Hayabusa2 performed a series of amazing and evolution of asteroids. In particular, Object Surveillance Mission (formerly called manoeuvres throughout the year, which Johnson et al. highlight the possible NEOCam) was finally greenlighted, aimed included retrieving two samples from existence of a new kind of volcanism, called at monitoring the skies to detect NEOs asteroid Ryugu’s surface, creating an artificial ferrovolcanism, that could have created (usually fast and dark, thus difficult to find crater on it, and deploying a second rover, eruptions of metal-rich material from the with telescopes). MINERVA-II-2 (which failed before deploy- core to the surface of metallic asteroids like Finally, small bodies are considered as ment but was released anyway in orbit to Psyche. Zhu et al.’s laboratory experiments enablers for human exploration. Resource perform some gravitational measurements). explain instead how water ice can be utilization and asteroid mining have started Among the other exciting small-bodies continually generated by space weathering to leave the realms of pure science fiction, events of the year, the discovery of the on airless bodies. An important component being increasingly discussed by scientists, second interstellar object, in September, of small-bodies studies is looking at families agencies and even the private sector in deserves mention. 2I/Borisov, contrary — groups of dynamically related objects practical terms. The recent announcement to 1I/’Oumuamua, has a clear cometary created by some catastrophic impact — as of a Luxembourg Space Resources character, highlighting the fact that the they hold crucial clues on the evolution and Innovation Centre demonstrates that the diversity of small bodies in our Solar System history of the asteroid belt. In an Article, topic is here to stay. Before it can happen, is mirrored in interstellar interlopers. And Carruba et al. study the very young families, a serious discussion concerning resource we were able to detect 2I/Borisov on its way the only ones for which sub-families (groups exploitation, sustainability and ethical issues in, before it reached perihelion, so we will be of bodies generated by subsequent impacts) will need to be established. able to acquire data for much longer than we can be discerned. In their Article, Pike et al. 2020 will also be rich in milestones in could for ‘Oumuamua. also studied a family, but a specific one: small-bodies exploration. In the first half 2019 was also a good year for the future the Haumea family, the only one identified of the year OSIRIS-REx will try to acquire of small-bodies exploration. Both Lucy and so far in the Kuiper belt. The last paper, a sample from the recently chosen landing Psyche, the latest NASA Discovery missions a Letter by Guzik et al., analyses the first site, a place in the northern hemisphere to be selected, passed critical technical detailed observations of 2I/Borisov. Finally, covered in dark regolith called Nightingale. reviews and are on course for their expected the Review Article by Kruijer et al. shows At the very end of the year, Hayabusa2 will launch dates in 2021 and 2022, respectively. how the isotopic composition of meteorites arrive back at Earth with its container of Both missions target small bodies (a tour holds clues on the very first years of the fresh asteroidal material. Interstellar comet of some Jupiter Trojans and the possibly Solar System, with the existence of two non- Borisov will remain visible for most of the metallic Psyche asteroid, respectively), and mixing reservoirs of material (carbonaceous year, probably until September. It’s a safe bet in general NASA likes to send their small- and non-carbonaceous, respectively) that that these small bodies will be big on impact budget missions towards such targets, as generated the diversity of small bodies we in 2020 and beyond. ❐ discussed by Mike A’Hearn in a Comment. observe today. These papers demonstrate There is good news from the ESA side the main role of small bodies in research: too, as it approved the innovative Comet they hold unique clues to the understanding Published online: 14 January 2020 Interceptor mission (actually an ESA/JAXA of the formation and evolution of the Solar https://doi.org/10.1038/s41550-019-1006-6 NATURE ASTRONOMY | VOL 4 | JANUARY 2020 | 1 | www.nature.com/natureastronomy 1.
Recommended publications
  • A Self Reconfigurable Undulating Grasper for Asteroid Mining
    A SELF RECONFIGURABLE UNDULATING GRASPER FOR ASTEROID MINING Suzanna Lucarotti1, Chakravarthini M Saaj1, Elie Allouis2 and Paolo Bianco3 1Surrey Space Centre, Guildford UK 2Airbus DS, Stevenage UK 3Airbus, Portsmouth UK ABSTRACT are estimated as over 1km diameter and 4133 as 300- 1000m diameter. While surface features remain mostly unknown, mass and orbit parameters are available. The Recent missions to asteroids have shown that many have closest NEAs can be reached with less ∆V than the rubble surfaces, which current extra-terrestrial mining Moon. techniques are unsuited for. This paper discusses mod- elling work for autonomous mining on small solar system There have been so far been five missions to the sur- bodies, such as Asteroids. A novel concept of a modular face of SSSBs - NEAR-Shoemaker to Eros, where they robot system capable of the helical caging and grasping unexpectedly landed [9], Hayabusa 1 to Itokawa [10], of surface rocks is presented. The kinematics and co- Rosetta to the Comet 67P Churyumov-Gerasimenko [11], ordinate systems of the Self RecoNfigurable Undulating Hayabusa 2 to Ryugu [12], and OSIRIS-Rex to Bennu Grasper (SNUG) are derived with a new mathematical [13]. Hayabusa 2 and OSIRUS-Rex are both currently formulation. This approach exploits rotational symmetry live missions. Detailed close-range surface images have and homogeneity to form a cage to safely grasp a target of been obtained from Itokawa, 67P and Ryugu, higher alti- uncertain properties. A simple model for grasping is eval- tude images from low orbit or prior to landing have been uated to assess the grasping capabilities of such a robot.
    [Show full text]
  • Chapter 1, Version A
    INCLUSIVE EDUCATION AND SCHOOL REFORM IN POSTCOLONIAL INDIA Mousumi Mukherjee MA, MPhil, Calcutta University; MA Loyola University Chicago; EdM University of Illinois, Urbana-Champaign Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy Education Policy and Leadership Melbourne Graduate School of Education University of Melbourne [5 June 2015] Keywords Inclusive Education, Equity, Democratic School Reform, Girls’ Education, Missionary Education, Postcolonial theory, Globalization, Development Inclusive Education and School Reform in Postcolonial India i Abstract Over the past two decades, a converging discourse has emerged around the world concerning the importance of socially inclusive education. In India, the idea of inclusive education is not new, and is consistent with the key principles underpinning the Indian constitution. It has been promoted by a number of educational thinkers of modern India such as Vivekananda, Aurobindo, Gandhi, Ambedkar, Azad and Tagore. However, the idea of inclusive education has been unevenly and inadequately implemented in Indian schools, which have remained largely socially segregated. There are of course major exceptions, with some schools valiantly seeking to realize social inclusion. One such school is in Kolkata, which has been nationally and globally celebrated as an example of best practice. The main aim of this thesis is to examine the initiative of inclusive educational reform that this school represents. It analyses the school’s understanding of inclusive education; provides an account of how the school promoted its achievements, not only within its own community but also around the world; and critically assesses the extent to which the initiatives are sustainable in the long term.
    [Show full text]
  • Argops) Solution to the 2017 Astrodynamics Specialist Conference Student Competition
    AAS 17-621 THE ASTRODYNAMICS RESEARCH GROUP OF PENN STATE (ARGOPS) SOLUTION TO THE 2017 ASTRODYNAMICS SPECIALIST CONFERENCE STUDENT COMPETITION Jason A. Reiter,* Davide Conte,1 Andrew M. Goodyear,* Ghanghoon Paik,* Guanwei. He,* Peter C. Scarcella,* Mollik Nayyar,* Matthew J. Shaw* We present the methods and results of the Astrodynamics Research Group of Penn State (ARGoPS) team in the 2017 Astrodynamics Specialist Conference Student Competition. A mission (named Minerva) was designed to investigate Asteroid (469219) 2016 HO3 in order to determine its mass and volume and to map and characterize its surface. This data would prove useful in determining the necessity and usefulness of future missions to the asteroid. The mission was designed such that a balance between cost and maximizing objectives was found. INTRODUCTION Asteroid (469219) 2016 HO3 was discovered recently and has yet to be explored. It lies in a quasi-orbit about the Earth such that it will follow the Earth around the Sun for at least the next several hundred years providing many opportunities for relatively low-cost missions to the body. Not much is known about 2016 HO3 except a general size range, but its close proximity to Earth makes a scientific mission more feasible than other near-Earth objects. A Request For Proposal (RFP) was provided to university teams searching for cost-efficient mission design solutions to assist in the characterization of the asteroid and the assessment of its potential for future, more in-depth missions and possible resource utilization. The RFP provides constraints on launch mass, bus size as well as other mission architecture decisions, and sets goals for scientific mapping and characterization.
    [Show full text]
  • The Solar System
    5 The Solar System R. Lynne Jones, Steven R. Chesley, Paul A. Abell, Michael E. Brown, Josef Durech,ˇ Yanga R. Fern´andez,Alan W. Harris, Matt J. Holman, Zeljkoˇ Ivezi´c,R. Jedicke, Mikko Kaasalainen, Nathan A. Kaib, Zoran Kneˇzevi´c,Andrea Milani, Alex Parker, Stephen T. Ridgway, David E. Trilling, Bojan Vrˇsnak LSST will provide huge advances in our knowledge of millions of astronomical objects “close to home’”– the small bodies in our Solar System. Previous studies of these small bodies have led to dramatic changes in our understanding of the process of planet formation and evolution, and the relationship between our Solar System and other systems. Beyond providing asteroid targets for space missions or igniting popular interest in observing a new comet or learning about a new distant icy dwarf planet, these small bodies also serve as large populations of “test particles,” recording the dynamical history of the giant planets, revealing the nature of the Solar System impactor population over time, and illustrating the size distributions of planetesimals, which were the building blocks of planets. In this chapter, a brief introduction to the different populations of small bodies in the Solar System (§ 5.1) is followed by a summary of the number of objects of each population that LSST is expected to find (§ 5.2). Some of the Solar System science that LSST will address is presented through the rest of the chapter, starting with the insights into planetary formation and evolution gained through the small body population orbital distributions (§ 5.3). The effects of collisional evolution in the Main Belt and Kuiper Belt are discussed in the next two sections, along with the implications for the determination of the size distribution in the Main Belt (§ 5.4) and possibilities for identifying wide binaries and understanding the environment in the early outer Solar System in § 5.5.
    [Show full text]
  • Journal Pre-Proof
    Journal Pre-proof A statistical review of light curves and the prevalence of contact binaries in the Kuiper Belt Mark R. Showalter, Susan D. Benecchi, Marc W. Buie, William M. Grundy, James T. Keane, Carey M. Lisse, Cathy B. Olkin, Simon B. Porter, Stuart J. Robbins, Kelsi N. Singer, Anne J. Verbiscer, Harold A. Weaver, Amanda M. Zangari, Douglas P. Hamilton, David E. Kaufmann, Tod R. Lauer, D.S. Mehoke, T.S. Mehoke, J.R. Spencer, H.B. Throop, J.W. Parker, S. Alan Stern, the New Horizons Geology, Geophysics, and Imaging Team PII: S0019-1035(20)30444-9 DOI: https://doi.org/10.1016/j.icarus.2020.114098 Reference: YICAR 114098 To appear in: Icarus Received date: 25 November 2019 Revised date: 30 August 2020 Accepted date: 1 September 2020 Please cite this article as: M.R. Showalter, S.D. Benecchi, M.W. Buie, et al., A statistical review of light curves and the prevalence of contact binaries in the Kuiper Belt, Icarus (2020), https://doi.org/10.1016/j.icarus.2020.114098 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
    [Show full text]
  • Download This Article in PDF Format
    A&A 564, A35 (2014) Astronomy DOI: 10.1051/0004-6361/201322416 & c ESO 2014 Astrophysics “TNOs are Cool”: A survey of the trans-Neptunian region X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations E. Vilenius1,C.Kiss2, T. Müller1, M. Mommert3,4, P. Santos-Sanz5,6,A.Pál2, J. Stansberry7, M. Mueller8,9, N. Peixinho10,11,E.Lellouch6, S. Fornasier6,12, A. Delsanti6,13, A. Thirouin5, J. L. Ortiz5,R.Duffard5, D. Perna6, and F. Henry6 1 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Giessenbachstr., 85741 Garching, Germany e-mail: [email protected] 2 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Konkoly Thege 15-17, 1121 Budapest, Hungary 3 Deutsches Zentrum für Luft- und Raumfahrt e.V., Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany 4 Northern Arizona University, Department of Physics and Astronomy, PO Box 6010, Flagstaff AZ 86011, USA 5 Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008-Granada, Spain 6 LESIA-Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, France 7 Stewart Observatory, The University of Arizona, Tucson AZ 85721, USA 8 SRON Netherlands Institute for Space Research, Postbus 800, 9700 AV Groningen, The Netherlands 9 UNS-CNRS-Observatoire de la Côte d’Azur, Laboratoire Cassiopée, BP 4229, 06304 Nice Cedex 04, France 10 Center for Geophysics of the University of Coimbra, Geophysical and Astronomical Observatory of the University of Coimbra, Almas de Freire, 3040-004 Coimbra, Portugal 11 Unidad de Astronomía, Facultad de Ciencias Básicas, Universidad de Antofagasta, 601 avenida Angamos, Antofagasta, Chile 12 Univ.
    [Show full text]
  • Ice Ontnos: Focus on 136108 Haumea
    Ice onTNOs: Focus on 136108 Haumea C. Dumas Collaborators: A. Alvarez, A. Barucci, C. deBergh, B. Carry, A. Guilbert, D. Hestroffer, P. Lacerda, F. deMeo, F. Merlin, C. Snodgrass, P. Vernazza, … Haumea Pluto (dwarf planets) DistribuTon of TNOs Largest TNOs Icy bodies in the OPSII context • Reservoir of volales in the solar system (H2O, N2, CH4, CO, CO2, C2H6, NH3OH, etc) • Small bodies populaon more hydrated than originally pictured – Main-belt comets (Hsieh and JewiZ 2006) – Themis asteroids family (Campins et al. 2010, Rivkin and Emery 2010) • Transport of water to the inner terrestrial planets (e.g. talk by Paul Hartogh) Paranal Observatory 6 SINFONI at UT4 7 SINFONI + NACO at UT4 8 SINFONI = MACAO + SPIFFI (SINFONI=Spectrograph for INtegral Field Observations in the Near Infrared) • AO SYSTEM: MACAO (Multi-Application Curvature Adaptive Optics): – Similar to UTs AO system for VLTI – 60 elements curvature sensing bimorph mirror – NGS or LGS – Developed by ESO • NEAR-IR SPECTRO: SPIFFI (SPectrometer for Infrared Faint Field Imaging): – 3-D spectrograph, 32 image slices, 1-2.5µm – Developed by MPE:Max Planck Institute for Extraterrestrial Physics + NOVA: Netherlands Research School for Astronomy SINFONI - Main characteristics • Location UT4 Cassegrain • Wavelength range 1-2.5µm • Detector 2048 x 2048 HAWAII array • Gratings J,H,K,H+K • Spectral resolution 1500 (H+K-filter) to 4000 (K-band) (outside OH lines) • Limiting magnitude (0.1”/spaxel) K~18.2, H+K~19.2 in hr, SNR~10 • FoV sampling 32 slices • Spatial resolution 0.25”/slice (no-AO), 0.1”(AO), 0.025” (AO) • Resulting FoV 8”x8”, 3”x3”, 0.8”x0.8” • Modes noAO, NGS-AO, LGS-AO SINFONI - IFS Principles SINFONI - IFS Principles (Cont’d) SINFONI - products Reconstructed image PSF spectrum H+K TNOs spectroscopy Orcus (Carry et al.
    [Show full text]
  • “Target Selection for a HAIV Flight Demo Mission,” IAA-PDC13-04
    Planetary Defense Conference 2013 IAA-PDC13-04-08 Target Selection for a Hypervelocity Asteroid Intercept Vehicle Flight Validation Mission Sam Wagnera,1,∗, Bong Wieb,2, Brent W. Barbeec,3 aIowa State University, 2271 Howe Hall, Room 2348, Ames, IA 50011-2271, USA bIowa State University, 2271 Howe Hall, Room 2325, Ames, IA 50011-2271, USA cNASA/GSFC, Code 595, 8800 Greenbelt Road, Greenbelt, MD, 20771, USA, 301.286.1837 Abstract Asteroids and comets have collided with the Earth in the past and will do so again in the future. Throughout Earth’s history these collisions have played a significant role in shaping Earth’s biological and geological histories. The planetary defense community has been examining a variety of options for mitigating the impact threat of asteroids and comets that approach or cross Earth’s orbit, known as near-Earth objects (NEOs). This paper discusses the preliminary study results of selecting small (100-m class) NEO targets and mission design trade-offs for flight validating some key planetary defense technologies. In particular, this paper focuses on a planetary defense demo mission for validating the effectiveness of a Hypervelocity Asteroid Intercept Vehicle (HAIV) concept, currently being investigated by the Asteroid Deflection Research Center (ADRC) for a NIAC (NASA Advanced Innovative Concepts) Phase 2 project. Introduction Geological evidence shows that asteroids and comets have collided with the Earth in the past and will do so in the future. Such collisions have played an important role in shaping the Earth’s biological and geological histories. Many researchers in the planetary defense community have examined a variety of options for mitigating the impact threat of Earth approaching or crossing asteroids and comets, known as near-Earth objects (NEOs).
    [Show full text]
  • Observing Water in Our Solar System
    Observing water in our Solar System Colin Snodgrass Ice in our Solar System www.nightsky.ie www.nightsky.ie 250 K 150 K 50 K Equilibrium temperature drops with distance ( d-½ ) Present day snow line is at ~2.7 AU from Sun, in asteroid belt. Ice exists on surfaces in Kuiper Belt. In inner solar system, sublimation drives cometary activity. Kuiper Belt Objects – Haumea Spectroscopy of KBOs, particularly in the NIR, reveals differences in their surface ices. Haumea ‘family’ have spectra that match almost pure water ice. Remains from a collision. We used the VLT+Hawk-I to identify ices on potential family members using photometry. Snodgrass et al 2010, Carry et al (submitted) Further Family Members Ragozzine & Brown (2007, AJ 134, p2160) published a list of further family member candidates selected on dynamical grounds. The orbits in the TN region (and interactions with resonances) make this difficult to do. Need to confirm that they share the same water ice surface to be true family members. However, most are too faint for the NIR spectroscopy that can unambiguously detect water ice. Water Ice Detection We use HAWK-I at the VLT to perform J and CH4 band photometry, using the CH4 band as a narrower H band. We confirm that our measurements of (J-Hs) are sensitive to water ice. We measured this colour for 18 objects. 6 are objects previously claimed as family members - they have strongly negative (J-Hs). 2 other objects are confirmed as family members, 2003 SQ317 and 2005 CB79. The remaining 10 (including non-candidate Eris, observed for comparison) have positive values and we rule out water ice surfaces.
    [Show full text]
  • Strategic Investments in Instrumentation and Facilities for Extraterrestrial Sample Curation and Analysis
    PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION Strategic Investments in Instrumentation and Facilities for Extraterrestrial Sample Curation and Analysis ADVANCE COPY NOT FOR PUBLIC RELEASE BEFORE Thursday, December 20, 2018 at 11:00 a.m. ___________________________________________________________________________________ PLEASE CITE AS A REPORT OF THE NATIONAL ACADEMIES OF SCIENCES, ENGINEERING, AND MEDICINE Committee on Extraterrestrial Sample Analysis Facilities Space Studies Board Division on Engineering and Physical Sciences A Consensus Study Report of PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This activity was supported by Grant/Contract No. XXXX with XXXXX. Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of any organization or agency that provided support for the project. International Standard Book Number-13: 978-0-309-XXXXX-X International Standard Book Number-10: 0-309-XXXXX-X Digital Object Identifier: https://doi.org/10.17226/25312 Additional copies of this publication are available for sale from the National Academies Press, 500 Fifth Street, NW, Keck 360, Washington, DC 20001; (800) 624-6242 or (202) 334-3313; http://www.nap.edu. Copyright 2018 by the National Academy of Sciences. All rights reserved. Printed in the United States of America Suggested citation: National Academies of Sciences, Engineering, and Medicine. 2018. Strategic Investments in Instrumentation and Facilities for Extraterrestrial Sample Curation and Analysis. Washington, DC: The National Academies Press. https://doi.org/10.17226/25312. PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION The National Academy of Sciences was established in 1863 by an Act of Congress, signed by President Lincoln, as a private, nongovernmental institution to advise the nation on issues related to science and technology.
    [Show full text]
  • Trajectory Optimization for First Human Asteroid Exploration Mission
    Journal of Aircraft and Spacecraft Technology Original Research Paper Trajectory Optimization for First Human Asteroid Exploration Mission 1Atiksha Sharma and 2Santosh Kosambe 1Independent Researcher, Nagpur, India 2Independent Researcher, Pune, India Article history Abstract: After the successful completion of robotic expeditions on Mars, Received: 06-03-2020 an ultimate goal was set for space fairing nations and agencies around the Revised: 21-04-2020 world to send astronauts to Mars by 2030. Unfortunately, a mission to Mars Accepted: 27-07-2020 would last upwards for years meanwhile several asteroids fly close to the Earth. A manned trip to an asteroid would be a valuable stepping stone Corresponding Author: Atiksha Sharma towards a manned mission to Mars, as the mission time can be reduced to a Independent Researcher, few months round-trip. In addition to gaining experience with manned Nagpur, India travel through deep space, a mission to an asteroid would provide Email: [email protected] experience overcoming a unique challenge of rendezvousing with a foreign object in microgravity. Since most of the known asteroids that are close enough to Earth to be viable targets are less than 300 m in diameter, chances are the selected asteroid will not have a significant gravitational field. Near Earth Asteroids (NEAs) have orbits that bring them into close proximity with Earth’s orbit making them both a unique hazard to life on Earth and a unique opportunity for science and exploration. A specific case study was therefore undertaken to shortlist such NEAs that are accessible for round-trip human missions using heavy lift launch architecture.
    [Show full text]
  • Water Ice in the Kuiper Belt Comes Through Three Separate Distinct Processes
    AJ, in press Water ice in the Kuiper belt M.E. Brown Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 [email protected] E.L. Schaller NASA Dryden Aircraft Operations Facility, Palmdale, CA 93550 and National Suborbital Education and Research Center, University of North Dakota, Grand Forks, ND, 85202 W.C. Fraser Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 ABSTRACT We examine a large collection of low resolution near-infrared spectra of Kuiper belt objects and centaurs in an attempt to understand the presence of water ice in the Kuiper belt. We find that water ice on the surface of these objects occurs in three separate manners: (1) Haumea family members uniquely show surfaces of nearly pure water ice, presumably a consequence of the fragmentation of the icy mantle of a larger differentiated proto-Haumea; (2) large objects with absolute magnitudes of H < 3 (and a limited number to H = 4.5) have surface coverings of water ice – perhaps mixed with ammonia – that appears to be related to possibly ancient cryovolcanism on these large objects; and (3) smaller KBOs and centaurs which are neither Haumea family arXiv:1204.3638v1 [astro-ph.EP] 16 Apr 2012 members nor cold-classical KBOs appear to divide into two families (which we refer to as “neutral” and “red”), each of which is a mixture of a common nearly-neutral component and either a slightly red or very red component that also includes water ice. A model suggesting that the difference between neutral and red objects s due to formation in an early compact solar system either inside or outside, respectively, of the ∼20 AU methanol evaporation line is supported by the observation that methanol is only detected on the reddest objects, which are those which would be expected to have the most of the methanol containing mixture.
    [Show full text]