Algebraic Matroids in Applications by Zvi H Rosen a Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Matroids in Applications by Zvi H Rosen a Dissertation Algebraic Matroids in Applications by Zvi H Rosen A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Bernd Sturmfels, Chair Professor Lior Pachter Professor Yun S. Song Spring 2015 Algebraic Matroids in Applications Copyright 2015 by Zvi H Rosen 1 Abstract Algebraic Matroids in Applications by Zvi H Rosen Doctor of Philosophy in Mathematics University of California, Berkeley Professor Bernd Sturmfels, Chair Algebraic matroids are combinatorial objects defined by the set of coordinates of an algebraic variety. These objects are of interest whenever coordinates hold significance: for instance, when the variety describes solution sets for a real world problem, or is defined using some combinatorial rule. In this thesis, we discuss algebraic matroids, and explore tools for their computation. We then delve into two applications that involve algebraic matroids: probability matrices and tensors from statistics, and chemical reaction networks from biology. i In memory of my grandparents יצחק אהרN וחנה רייזל דייוויס ז"ל! Isaac and Ann Davis יצחק יוסP ושרה רוזN ז"ל! Isaac and Sala Rosen whose courage and perseverance through adversity will inspire their families for generations. ii Contents Contents ii List of Figures iv List of Tables v 1 Introduction 1 1.1 Summary of Main Results . 1 1.2 Examples . 2 1.3 Definitions, Axioms, and Notation . 5 2 Computation 10 2.1 Symbolic Algorithm . 11 2.2 Linear Algebra . 11 2.3 Sample Computations for Applications . 15 3 Statistics: Joint Probability Matroid 25 3.1 Completability of Partial Probability Matrix . 28 3.2 Semialgebraic Description . 35 3.3 Completion Algorithms . 39 3.4 Algebraic Matroids . 45 3.5 Generalizations . 47 4 Biology: Chemical Reaction Matroid 50 4.1 From Biology to Algebra . 53 4.2 Ideals, Varieties, and Nine Points . 57 4.3 Multistationarity and its Discriminant . 59 4.4 Algebraic Matroids and Parametrizations . 62 4.5 Polyhedral Geometry . 66 4.6 Parameter Estimation . 68 4.7 From Algebra to Biology . 73 5 Further Directions 76 iii Bibliography 79 iv List of Figures 1.1 Example of linear matroid. 3 1.2 Example of graphic matroid. 4 2.1 Schlegel diagram for the affine representation of M(PL4) . 16 2.2 Circuit degree frequency for M(PL4). ....................... 18 2.3 Base degree frequency for M(PL4).......................... 18 2.4 Non-cobases of M(Imix)................................ 19 2.5 Base degrees for M(Imix)............................... 19 2.6 Affine representation of the MAP kinase matroid. 21 2.7 Base of M(Gr(3; 6)) with base degree 7....................... 22 2.8 Circuit degree frequency for M(Gr(3; 6)). ..................... 23 2.9 Circuit of M(Gr(3; 6)) with degree 12........................ 23 2.10 Non-Pappus matroid. 23 3.1 Completable probability masks of 2 × 2 matrices with diagonal entries observed. 29 3.2 Completable probability masks of 3 × 3 matrices with diagonal entries observed. 31 3.3 Region defined by (3.11) inside the cube [0; 2]3. .................. 36 3.4 Solution curves for c = 1=9; 1=10; 1=16; 1=36; 1=64, and 1=150. 43 4.1 Graphic rep. of Mone, and affine rep. of the rank 4 component of Mpar. 70 4.2 Schematic diagram for systems biology research. 73 v List of Tables 2.1 Commands to compute algebraic matroids using matroids.m2 .......... 12 3.2 Algorithm for completing probability matrix projections. 41 4.1 The 19 species in the Wnt shuttle model. 55 4.2 The 31 reactions in the Wnt shuttle model. 56 4.3 Frequencies for the sampling schemes. 61 4.4 Frequencies for testing robustness scheme. 61 4.5 The 951 circuit polynomials, by numbers of unknowns xi and kj. 64 4.6 Reducing the steady state equations to the 2092 bases of base degree 1 . 65 vi Acknowledgments אוֹדה ה' בכל לבי אספרה כל נפלאותיK; (תהליM ט;ב)! I thank the Lord with my whole heart . (Psalms 9:2) Working towards a doctorate can come with unexpected challenges. The process involves learning a great deal about one’s area of research, as well as learning a lot about yourself. I have been blessed to have many supporters who encouraged me to pursue a career in math- ematics. Amitai Bin-Nun encouraged me to pursue research when I was an undergraduate, helping me apply to summer programs; he continues providing insightful advice when I call. Jessica Sidman gave me my first experience in math research, getting me hooked on the ex- perience; she also continues to be a great advisor. Many professors from my undergraduate training, especially Dennis DeTurck and Andreea Nicoara, taught me beautiful mathematics and helped me apply to graduate school. My mathematical life in Berkeley included terrific teaching experiences with Per Persson and Slobodan Simic. My graduate research experiences were fun and enriching thanks to all of my coauthors, especially Elizabeth Gross, Heather Harrington, and Kaie Kubjas, with whom I wrote the work forming much of this thesis. I also want to extend my gratitude to Carina Curto, Alex Fink, Heather Harrington, and Shmuel Onn for their help in the process of applying to postdoctoral grants and jobs. I owe a great debt to Bernd Sturmfels for taking me on as a student. It has been a privilege to benefit from his mathematical insight and to participate in the community of great thinkers that surrounds him. I also want to thank him for going through multiple drafts of all my writing including this dissertation, and providing detailed feedback to improve it. He has demonstrated tremendous patience and support, and I am incredibly grateful. The professors who served on the committee for my qualifying examination and my disser- tation were Mark Haiman, Lior Pachter, Satish Rao, Yun Song, and Dan-Virgil Voiculescu. Their willingness to participate is highly appreciated. The Berkeley math department has an incredible staff who make the lives of the graduate student population much easier. In par- ticular, I want to extend my appreciation to Barb Waller, Marsha Snow, and Judie Filomeo. I also spent a semester at the Max Planck Institute for Mathematics in Bonn, Germany, and Anke Völzmann was incredibly helpful in locating resources. Moving to Berkeley, CA from my home on the East Coast was a daunting enterprise in itself and I thank the members of Congregation Beth Israel, particularly Rabbi Yonatan and Frayda Cohen and Avraham and Ruchama Burrell whose hospitality and kindness to me has been nothing short of extraordinary. I also want to thank Maharat Victoria Sutton and Adam Brelow, Zeev and Tamara Neumeier, Naaman and Meechal Kam, and Maayan and Elishav Rabinovich for being so welcoming and generous. My group of friends, particularly Ali Austerlitz, Arabella Bangura, Benjamin Epstein, Boaz Haberman, Amalya Lehmann, Matty Lichtenstein, Shivaram Lingamneni and Jonathan Thirman made Berkeley feel like home, and gave me tremendous support and friendship. I also want to thank Eitan Adler, Yonatan Cantor, Jonathan Eskreis-Winkler, Elie Friedman, Miki Friedmann, Yoni Halpern, vii Ariella Meisel, Noam Pratzer, David Pruwer, and Mordechai Treiger whose support from afar kept me going. I could never have made it this far without the love and support of my family: my mother and father especially, for always making themselves available in times of need, and for serving as living examples for me. My siblings and my brothers-in-law have also been unfailingly kind and welcoming whenever I have needed their help. It is a wonderful gift to have family that always picks up the phone. 1 Chapter 1 Introduction Both chapters 1 and 2 are based on material from Computing Algebraic Matroids [48]. The definitions and introductory examples are brought to aid exposition, but similar examples can be found in standard texts such as [45] and [56]. Algebraic matroids have a surprisingly long history. They were studied as early as the 1930’s by van der Waerden, in his textbook Moderne Algebra [55, Chapter VIII], and MacLane in one of his earliest papers on matroids [35]. The topic lay dormant until the 70’s and 80’s, when a number of papers about representability of matroids as algebraic ma- troids were published: notably by Ingleton and Main [23], Dress and Lovasz [11], the thesis of Piff [46], and extensively by Lindström ([32, 33, 30, 31], among others). In recent years, the algebraic matroids of toric varieties found application (e.g. in [43]); however, they have been primarily confined to that setting. Renewed interest in algebraic matroids comes from the field of matrix completion, start- ing with [26], where the set of entries of a low-rank matrix are the ground set of the algebraic matroid associated to the determinantal variety. In applied algebra in general, coordinates typically carry real-world significance, and the matroid has inherent interest as the depen- dence structure among those quantities. Even for varieties arising in pure mathematics, distinguished coordinates may have combinatorial meaning, in which case the matroid also provides insight. 1.1 Summary of Main Results The purpose of this dissertation is to provide the relevant tools for computation of algebraic matroids and to actually use them in practice. The remainder of Chapter 1 introduces matroids to the reader and defines technical language that will be used in the thesis. We prove some basic results where the proof is particularly instructive or relevant. In Chapter 2, we summarize two techniques for computing algebraic matroids associated to prime ideals. An original definition in this chapter is the non-matroidal locus of an affine variety. This is a subvariety which exhibits degenerate behavior under coordinate projection.
Recommended publications
  • On Gelfand-Kirillov Transcendence Degree
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 348, Number 7, July 1996 ON GELFAND-KIRILLOV TRANSCENDENCE DEGREE JAMES J. ZHANG Abstract. We study some basic properties of the Gelfand-Kirillov transcen- dence degree and compute the transcendence degree of various infinite-dimen- sional division algebras including quotient division algebras of quantized alge- bras related to quantum groups, 3-dimensional Artin-Schelter regular algebras and the 4-dimensional Sklyanin algebra. 1. Introduction The Gelfand-Kirillov transcendence degree was introduced in [GK] by I. M. Gelfand and A. A. Kirillov in order to show that the n-th and m-th Weyl divi- sion algebras Dn and Dm are not isomorphic if n = m. For an algebra A over a base field k, the Gelfand-Kirillov transcendence degree6 of A is defined to be n Tdeg(A)=supinf lim logn dim((k + bV ) ) b n V →∞ where V ranges over the subframes (i.e. finite dimensional subspaces containing 1) of A and b ranges over the regular elements of A. The dimension of a k-vector space is always denoted by dim. The Gelfand-Kirillov dimension of A,whichwas also introduced in [GK], is defined to be GKdim(A)=sup lim log dim(V n) n n V →∞ where V ranges over the subframes of A. Gelfand and Kirillov proved that GKdim and Tdeg of the n-th Weyl algebra An are 2n and that Tdeg of the quotient division algebra Dn of An is 2n. On the other hand, L. Makar-Limanov showed that the first Weyl division algebra D1 (and hence Dn for all n 1) contains a noncommutative free subalgebra of two ≥ variables [M-L].
    [Show full text]
  • The Hermite–Lindemann–Weierstraß Transcendence Theorem
    The Hermite–Lindemann–Weierstraß Transcendence Theorem Manuel Eberl March 12, 2021 Abstract This article provides a formalisation of the Hermite–Lindemann– Weierstraß Theorem (also known as simply Hermite–Lindemann or Lindemann–Weierstraß). This theorem is one of the crowning achieve- ments of 19th century number theory. The theorem states that if α1; : : : ; αn 2 C are algebraic numbers that are linearly independent over Z, then eα1 ; : : : ; eαn are algebraically independent over Q. Like the previous formalisation in Coq by Bernard [2], I proceeded by formalising Baker’s alternative formulation of the theorem [1] and then deriving the original one from that. Baker’s version states that for any algebraic numbers β1; : : : ; βn 2 C and distinct algebraic numbers αi; : : : ; αn 2 C, we have: α1 αn β1e + ::: + βne = 0 iff 8i: βi = 0 This has a number of immediate corollaries, e.g.: • e and π are transcendental • ez, sin z, tan z, etc. are transcendental for algebraic z 2 C n f0g • ln z is transcendental for algebraic z 2 C n f0; 1g 1 Contents 1 Divisibility of algebraic integers 3 2 Auxiliary facts about univariate polynomials 6 3 The minimal polynomial of an algebraic number 10 4 The lexicographic ordering on complex numbers 12 5 Additional facts about multivariate polynomials 13 5.1 Miscellaneous ........................... 13 5.2 Converting a univariate polynomial into a multivariate one . 14 6 More facts about algebraic numbers 15 6.1 Miscellaneous ........................... 15 6.2 Turning an algebraic number into an algebraic integer .... 18 6.3 Multiplying an algebraic number with a suitable integer turns it into an algebraic integer.
    [Show full text]
  • Excellence and Uncountable Categoricity of Zilber's Exponential
    EXCELLENCE AND UNCOUNTABLE CATEGORICITY OF ZILBER’S EXPONENTIAL FIELDS MARTIN BAYS AND JONATHAN KIRBY Abstract. We prove that Zilber’s class of exponential fields is quasiminimal excellent and hence uncountably categorical, filling two gaps in Zilber’s original proof. 1. Introduction In [Zil05], Zilber defined his exponential fields to be models in a certain class ∗ ECst,ccp. The purpose of this note is to give a proof of the following categoricity theorem, filling gaps in the proof from that paper. ∗ Theorem 1. For each cardinal λ, there is exactly one model Bλ in ECst,ccp of exponential transcendence degree λ, up to isomorphism. Furthermore, the cardinality ∗ of Bλ is λ + ℵ0, so ECst,ccp is categorical in all uncountable cardinals. In particular there is a unique model, B, of cardinality 2ℵ0 and so it makes sense to ask, as Zilber does, whether the complex exponential field Cexp is isomorphic to B. In another paper [BHH+12] we prove a result about quasiminimal excellent classes which gives a way to avoid one of the holes in Zilber’s proof: instead of proving the excellence axiom for this class we show it is redundant by proving it in general. However, we believe that the direct proof given here is of independent interest. In section 2 of this paper we outline the definition of Zilber’s exponential fields, and the concepts of strong extensions and partial exponential subfields. We then give the first-order language in which we work. Section 3 introduces quasiminimal ∗ excellent classes and, largely by reference to Zilber’s work, shows that ECst,ccp sat- isfies all of the axioms except the excellence axiom.
    [Show full text]
  • Structures Associated with Real Closed Fields and the Axiom Of
    Structures Associated with Real Closed Fields and the Axiom of Choice Merlin Carl Abstract An integer part I of a real closed field K is a discretely ordered subring of K with minimal positive element 1 such that, for every x ∈ K, there is i ∈ I with i ≤ x < i + 1. Mourgues and Ressayre showed in [MR] that every real closed field has an integer part. Their construction implicitly uses the axiom of choice. We show that AC is actually necessary to obtain the result by constructing a transitive model of ZF which contains a real closed field without an integer part. Then we analyze some cases where the axiom of choice is not neces- sary for obtaining an integer part. On the way, we demonstrate that a class of questions containing the question whether the axiom of choice is necessary for the proof of a certain ZFC-theorem is algorithmically undecidable. We further apply the methods to show that it is indepen- dent of ZF whether every real closed field has a value group section and a residue field section. This also sheds some light on the possibility to effectivize constructions of integer parts and value group sections which was considered e.g. in [DKKL] and [KL]. 1 Introduction A real closed field (RCF ) K is a field in which −1 is not a sum of squares arXiv:1402.6130v2 [math.LO] 13 Jan 2016 and every polynomial of odd degree has a root. Equivalently, it is elementary equivalent to the field of real numbers in the language of rings.
    [Show full text]
  • Commutative Algebra
    Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions .
    [Show full text]
  • 210 the Final Chapter, on Algebraic Independence of Transcendental
    210 BOOK REVIEWS [July The final chapter, on algebraic independence of transcendental numbers, contains an exposition of Siegel's method, by means of which it can be shown, under suitable circumstances, that alge­ braically independent solutions of a system of linear differential equa­ tions have algebraically independent values for algebraic argument. The general framework of the method is set out very clearly, and applications are made to (a) Lindemann's theorem, that if cei, • • • , an are algebraic numbers, linearly independent over the rationals, then e<*it . 9 ectn are algebraically independent over the rationals; and (b) Siegel's theorem, that if XQT^O is algebraic, the values JQ(XQ) and Jo(x0) of the Bessel function are algebraically independent over the rationals. The book ends with an interesting list of open problems which the author considers both important and attainable. W. J. LEVEQUE Applied analysis. By Cornelius Lanczos. Englewood Cliffs, Prentice Hall, 1956. 20+539 pp. $9.00. This is a systematic development of some of the ideas of Professor Lanczos in the field of applied analysis, rather than another textbook. Instead of the adjective "applied," the author suggests that "parexic"1 would be more appropriate. Parexic analysis lies between classical analysis and numerical analysis: it is roughly the theory of approxi­ mation by finite (or truncated infinite) algorithms. There is, therefore, some overlap with what is being called elsewhere "constructive theory of functions." However, this book is a very personal one, and has been influenced by the varied experiences of the author: in regular aca­ demic work, in government service, in industry, and now at the Dublin Institute for Advanced Study.
    [Show full text]
  • Algebraic Independence
    Algebraic Independence UGP : CS498A Report Advisor : Dr. Nitin Saxena Tushant Mittal Indian Institute of Technology, Kanpur Contents 1 Introduction 2 1.1 The Problem........................................2 1.2 Motivation.........................................2 1.3 Preliminary Definitions..................................3 2 Previous Work 4 2.1 Computability.......................................4 2.1.1 The \Brute force" Algorithm...........................4 2.2 Characteristic 0 (or large) fields.............................5 2.3 Witt-Jacobian Criterion..................................5 2.4 Generalizing the Jacobian.................................5 3 Dimension Reduction6 3.1 Notation..........................................6 3.2 The first approach....................................6 3.3 The k-gap.........................................7 3.3.1 Bivariate Case...................................7 4 New Criterion 9 4.1 Ideal Shrink........................................9 4.2 Criterion.......................................... 10 5 Conclusion and Future Directions 12 6 Acknowledgements 13 1 Chapter 1 Introduction 1.1 The Problem The concept of algebraic independence is a natural generalization of the familiar notion of linear dependence. More formally, Definition 1.1. A subset S of a field L is algebraically dependent over a subfield K if the elements of S satisfy a non-trivial polynomial equation with coefficients in K. ♦ A few concrete examples are : • Algebraic/Transcendental Numbers : L = C ;K = Q;S = fαg • Polynomials : L = F(x1; ··· ; xn);K = F;S = ff1; ··· ; fng The problem of testing algebraic independence is then, Given a set of polynomials ff1; ··· ; fng determine if they are algebraically dependent i.e does there 9 A 2 F[y1; ··· ; yn] such that A(f1; ··· ; fn) = 0. ( A is called its annihilating polynomial ). Examples 1. The set f = fx1; x2; ··· ; xkg is always algebraically independent. p p 2. Algebraic dependence depends on the underlying field, fx1 +x2; x1 +x2g is independent over p Q but is dependent over Fp with y2 − y1 as the annihilating polynomial.
    [Show full text]
  • Criteria of Algebraic Independence with Multiplicities and Interpolation Determinants
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 351, Number 5, Pages 1845{1870 S 0002-9947(99)02216-3 Article electronically published on January 19, 1999 CRITERIA OF ALGEBRAIC INDEPENDENCE WITH MULTIPLICITIES AND INTERPOLATION DETERMINANTS MICHEL LAURENT AND DAMIEN ROY Abstract. We generalize Gel'fond's criterion of algebraic independence by taking into account the values of the derivatives of the polynomials, and show how the new criterion applies to proving results of algebraic independence using interpolation determinants. We also establish a new result of approximation of a transcendental number by algebraic numbers of bounded degree and size. It contains an earlier result of E. Wirsing and also a result announced by A. Durand. 1. Introduction The problem of adapting the method of Interpolation Determinants to questions of algebraic independence has been open since 1989 (see [4]). Very recently, a solution has been proposed in [7] and [8]. It combines techniques introduced in [5] in the context of linear forms in logarithms, together with approximation results of complex numbers by algebraic numbers with large degree. In this paper, we propose another solution, in some sense more traditional, because it relies on a criterion of algebraic independence which is nevertheless of a new type. We shall restrict ourselves to problems of algebraic independence in transcendence degree 1, for which the standard tool is a criterion of Gel’fond (see for example [1]). The principle of the method is very simple. Consider the interpolation deter- minant attached to a given situation of algebraic independence. Suppose that its entries belong to a field of transcendence degree 1 over Q, say for simplicity a field of rational functions Q(θ).
    [Show full text]
  • Algebraic Matroids and Frobenius Flocks
    ALGEBRAIC MATROIDS AND FROBENIUS FLOCKS GUUS P. BOLLEN, JAN DRAISMA, AND RUDI PENDAVINGH Abstract. We show that each algebraic representation of a matroid M in positive characteristic determines a matroid valuation of M, which we have named the Lindstr¨omvaluation. If this valuation is trivial, then a linear representation of M in characteristic p can be derived from the algebraic representation. Thus, so-called rigid matroids, which only admit trivial valuations, are algebraic in positive characteristic p if and only if they are linear in characteristic p. To construct the Lindstr¨omvaluation, we introduce new matroid representations called flocks, and show that each algebraic representation of a matroid induces flock representations. 1. Introduction Several years before Whitney defined matroids in [23], Van der Waerden [22] recognized the commonality between algebraic and linear independence which is the defining property of matroids (see [18, Section 39.10b]). Today, linear matroids are the subject of some of the deepest theorems in combinatorics. By contrast, our understanding of algebraic matroids is much less advanced. Algebraic matroids seem forebodingly hard to deal with, compared to linear matroids. Deciding if a matroid has a linear representation over a given field amounts to solving a system of polynomial equations over that field, which makes the linear representation problem decidable over algebraically closed fields (for the situation of representability over Q, see [21]). We do not know of any procedure to decide if a matroid has an algebraic representation; for example, it is an open problem if the Tic-Tac-Toe matroid, a matroid of rank 5 on 9 elements, is algebraic [8].
    [Show full text]
  • Math 249A Fall 2010: Transcendental Number Theory
    Math 249A Fall 2010: Transcendental Number Theory A course by Kannan Soundararajan LATEXed by Ian Petrow September 19, 2011 Contents 1 Introduction; Transcendence of e and π α is algebraic if there exists p 2 Z[x], p 6= 0 with p(α) = 0, otherwise α is called transcendental . Cantor: Algebraic numbers are countable, so transcendental numbers exist, and are a measure 1 set in [0; 1], but it is hard to prove transcendence for any particular number. p p 2 Examples of (proported) transcendental numbers: e, π, γ, eπ, 2 , ζ(3), ζ(5) ::: p p 2 Know: e, π, eπ, 2 are transcendental. We don't even know if γ and ζ(5), ζ(7);::: are irrational or rational, and we know that ζ(3) is irrational, but not whether or not it is transcendental! Lioville showed that the number 1 X 10−n! n=1 is transcendental, and this was one of the first numbers proven to be transcen- dental. Theorem 1 (Lioville). If 0 6= p 2 Z[x] is of degree n, and α is a root of p, α 62 , then Q a C(α) α − ≥ : q qn Proof. Assume without loss of generality that α < a=q, and that p is irreducible. Then by the mean value theorem, p(α) − p(a=q) = (α − a=q)p0(ξ) 1 for some point ξ 2 (α; a=q). But p(α) = 0 of course, and p(a=q) is a rational number with denominator qn. Thus 1=qn ≤ jα − a=qj sup jp0(x)j: x2(α−1,α+1) This simple theorem immediately shows that Lioville's number is transcen- dental because it is approximated by a rational number far too well to be al- gebraic.
    [Show full text]
  • Algebraic Matroids and Frobenius Flocks
    Algebraic matroids and Frobenius flocks Citation for published version (APA): Bollen, G. P., Draisma, J., & Pendavingh, R. A. (2017). Algebraic matroids and Frobenius flocks. arXiv, (1701.06384v2), 1-21. [1701.06384v2]. http://arxiv.org/abs/1701.06384v2 Document status and date: Published: 23/01/2017 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Arxiv:1701.06384V4 [Math.CO] 22 Nov 2017
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) ALGEBRAIC MATROIDS AND FROBENIUS FLOCKS GUUS P. BOLLEN, JAN DRAISMA, AND RUDI PENDAVINGH Abstract. We show that each algebraic representation of a matroid M in positive characteristic determines a matroid valuation of M, which we have named the Lindstr¨omvaluation. If this valuation is trivial, then a linear representation of M in characteristic p can be derived from the algebraic representation. Thus, so-called rigid matroids, which only admit trivial valuations, are algebraic in positive characteristic p if and only if they are linear in characteristic p. To construct the Lindstr¨omvaluation, we introduce new matroid representations called flocks, and show that each algebraic representation of a matroid induces flock representations. 1. Introduction Several years before Whitney defined matroids in [23], Van der Waerden [22] recognized the commonality between algebraic and linear independence which is the defining property of matroids (see [18, Section 39.10b]). Today, linear matroids are the subject of some of the deepest theorems in combinatorics. By contrast, our understanding of algebraic matroids is much less advanced. Algebraic matroids seem forebodingly hard to deal with, compared to linear matroids. Deciding if a matroid has a linear representation over a given field amounts to solving a system of polynomial equations over that field, which makes the linear representation problem decidable over algebraically closed fields (for the situation of representability over Q, see [21]). We do not know of any procedure to decide if a matroid has an algebraic representation; for example, it is an open problem if the Tic-Tac-Toe matroid, a matroid of rank 5 on 9 elements, is algebraic [8].
    [Show full text]