Sodium–Glucose Cotransporter 2 Inhibitors and the Risk of Fractures

Total Page:16

File Type:pdf, Size:1020Kb

Sodium–Glucose Cotransporter 2 Inhibitors and the Risk of Fractures Diabetes Care e1 Sodium–Glucose Cotransporter Devin Abrahami,1,2 Antonios Douros,1,3,4 Hui Yin,1 2 Inhibitors and the Risk of Fractures Oriana H.Y. Yu,1,5 and Among Patients With Type 2 Diabetes Laurent Azoulay1,2,6 https://doi.org/10.2337/dc19-0849 The association between sodium–glucose (alternate metformin indication) at the initiation before 2013; i.e., prevalent cotransporter 2 (SGLT2) inhibitors and the time of the first-ever prescription of an use); and 4) other treatments. Current risk of fractures is controversial. In the antidiabetic drug. Using this base and new use DPP-4 inhibitors served as Canagliflozin Cardiovascular Assessment cohort, we then assembled a study the reference group. For all exposure Study (CANVAS) Program, canagliflozin cohort of individuals who initiated a new categories, exposed person-time was de- was associated with a significant in- antidiabetic drug class as of 2013 (year fined by the prescription duration plus a creased risk of fractures compared with the first SGLT2 inhibitor was intro- 90-day grace period to allow for a poten- placebo (hazard ratio [HR] 1.26, 95% CI duced in the U.K.). Cohort entry was tial latent exposure effect on the out- 1.04–1.52) (1). Possible mechanisms may defined by the date of this new pre- come. Time-dependent Cox proportional involve elevated serum phosphate levels scription. We excluded individuals hazards models were used to calculate or reductions in bone mineral density (2). with a diagnosis of Paget disease, HRs, adjusted for 45 covariates (Table 1), To date, three recent observational stud- osteomalacia, or hyperparathyroid- including smoking status, BMI, medica- ies investigated this association, but ism, rare risk factors associated with tions, and duration of treated diabetes. these did not observe an increased risk fracture incidence, at any time before This study was approved by the CPRD of fractures (3–5). However, these cohort entry. Patients were monitored Independent Scientific Advisory Commit- studies had some limitations, including from cohort entry until the first of an tee (protocol 18_221) and by the Jewish residual confounding, a limited outcome incident diagnosis of fracture, death from General Hospital Research Ethics Board. definition, or restriction to a single SGLT2 any cause, an incident diagnosis of Paget This study included 73,178 patients, inhibitor. disease, osteomalacia, or hyperparathy- with 9,454 SGLT2 inhibitor users (1,288 To address these limitations, we roidism, end of registration with the canagliflozin, 5,539 dapagliflozin, 2,133 conducted a population-based cohort general practice, or end of the study empagliflozin, and 494 users of .1 study using the U.K. Clinical Practice period (31 March 2018). SGLT2 inhibitor) and 18,410 DPP-4 in- fi fi Research Datalink (CPRD). We rst We de ned exposure using a time- hibitor users, monitored for a median e-LETTERS assembled a base cohort of all individ- varying definition, where each person- duration of 1.9 years (patient character- uals, at least 40 years old, newly treated day of follow-up was classified into one istics on file). There were 1,973 fracture with antidiabetic drugs between 1 Jan- of the following four mutually exclusive events, corresponding to an incidence – uary 1988 and 31 December 2017. We categories: 1) current use of SGLT2 in- rate of 12.88 (95% CI 12.32–13.46) per OBSERVATIONS excluded individuals with ,1yearof hibitors; 2) current use of dipeptidyl 1,000 person-years. medical history, those initially pre- peptidase 4 (DPP-4) inhibitors (with ini- The results of this study are presented scribed insulin in monotherapy, and tiation after 2013; i.e., new use); 3) in Table 1. Compared with use of DPP-4 women with polycystic ovary syndrome current use of DPP-4 inhibitors (with inhibitors, use of SGLT2 inhibitors was not 1Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada 2Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada 3Department of Medicine, McGill University, Montreal, Canada 4Institute of Clinical Pharmacology and Toxicology, Charite´ – Universitatsmedizin¨ Berlin, corporate member of Freie Universitat¨ Berlin, Humboldt-Universitat¨ zu Berlin, and Berlin Institute of Health, Berlin, Germany 5Division of Endocrinology, Jewish General Hospital, Montreal, Canada 6Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada Corresponding author: Laurent Azoulay, [email protected] Received 29 April 2019 and accepted 23 June 2019 © 2019 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license. Diabetes Care Publish Ahead of Print, published online July 11, 2019 e2 SGLT2 Inhibitors and Fracture Risk Diabetes Care Table 1—Crude and adjusted HRs for the association between the use of SGLT2 inhibitors and the risk of fractures HR Analysis Events Person-years Incidence rate (95% CI)* Crude Adjusted† Primary analysis‡ DPP-4 inhibitors 403 27,210 14.8 (13.4–16.3) 1.00 [Reference] 1.00 [Reference] SGLT2 inhibitors 138 12,500 11.0 (9.3–13.0) 0.75 0.97 (0.79–1.19) Type of SGLT2 inhibitor§ Canagliflozin only 10 1,764 5.7 (2.7–10.4) 0.38 0.47 (0.25–0.88) Dapagliflozin only 98 8,624 11.4 (9.2–13.8) 0.77 1.01 (0.81–1.27) Empagliflozin only 30 2,031 14.8 (10.0–21.1) 1.00 1.29 (0.88–1.88) Type of fracture| Upper limb 57 12,500 4.6 (3.5–5.9) 0.85 1.00 (0.73–1.38) Lower limb 46 12,500 3.7 (2.7–4.9) 0.68 0.93 (0.66–1.32) Vertebral 11 12,500 0.9 (0.4–1.6) 1.23 1.76 (0.81–3.82) Other 33 12,500 2.6 (1.8–3.7) 0.57 0.89 (0.60–1.33) Effect measure modification¶ No fracture history 129 12,170 10.6 (8.8–12.6) 0.74 0.95 (0.78–1.18) History of fracture 9 330 27.3 (12.5–51.8) 0.95 1.18 (0.51–2.69) No history of osteoporosis 130 12,180 10.7 (8.9–12.7) 0.80 0.97 (0.78–1.20) History of osteoporosis 8 320 25.0 (10.8–49.3) 0.67 0.84 (0.39–1.81) ,65 years old 83 8,957 9.3 (7.4–11.5) 0.94 0.91 (0.69–1.22) 65–74 years old 45 3,063 14.7 (10.7–19.7) 1.13 1.11 (0.78–1.59) $75 years old 10 480 20.8 (10.0–38.3) 0.77 0.84 (0.44–1.61) Female 68 4,845 14.0 (10.9–17.8) 0.63 0.88 (0.67–1.17) Male 70 7,654 9.1 (7.1–11.6) 0.93 1.10 (0.82–1.47) Sensitivity analyses Competing risk 138 12,500 11.0 (9.3–13.0) 0.76 0.98 (0.80–1.20) High-dimensional disease risk score# 138 12,500 11.0 (9.3–13.0) 0.75 0.97 (0.80–1.18) Marginal structural model** 137 153,736 0.9 (0.7–1.1) 0.73 0.95 (0.73–1.24) Alternate reference group†† 138 12,500 11.0 (9.3–13.0) 0.97 1.10 (0.82–1.48) *Per 1,000 person-years. †Adjusted for age, sex, year of cohort entry, alcohol-related disorders (including alcohol dependency, alcoholic cirrhosis of the liver, alcoholic hepatitis, and hepatic failure), smoking status, BMI, inflammatory bowel disease, rheumatoid arthritis, hemoglobin A1c, duration of treated diabetes, macrovascular complications of diabetes (including stroke, myocardial infarction, and peripheral vascular disease), microvascular complications of diabetes (including nephropathy, neuropathy, and retinopathy), cancer, fracture history, osteoporosis, and use of bisphosphonates, use of antidiabetic drugs in the year before cohort entry, use of calcium and vitamin D, number of unique nonantidiabetic drugs in the year before cohort entry, use of benzodiazepines, sedative-hypnotics, opioids, selective serotonin reuptake inhibitors, tricyclic antidepressants, anti-Parkinson disease drugs, centrally acting antihypertensive drugs, nitrates, nonnitrate antianginal agents, thiazide and thiazide-like diuretics, inhaled glucocorticoids, oral glucocorticoids, proton pump inhibitors, H2 receptor antagonists, anticonvulsants, atypical antipsychotics, typical antipsychotics, and loop diuretics in the year before cohort entry. Variables with missing data were imputed using multiple imputation, using results from five imputations. ‡The median duration of DPP-4 inhibitor use was 366 days, and the median duration of SGLT2 inhibitor use was 343.5 days. Current use of DPP-4 inhibitors (with initiationbefore 2013)anduse of othertreatmentswereconsideredin the modelbut notpresentedinthe table.Thesegroups generated67 eventsfrom 4,357 person-years and 1,365 events from 109,113 person-years, respectively. §Drug switchers (individuals who used more than one type of SGLT2 inhibitor) were considered in a separate category. This group generated 0 events from 81 person-years. |DPP-4 inhibitor users (reference) generated 148, 146, 19, and 128 upper-limb, lower-limb, vertebral, and other fractures, respectively, in 27,210 person-years of follow-up. ¶DPP-4 inhibitor users without a fracture history generated 382 events in 26,481 person-years, and those with a history of fracture generated 21 events in 729 person-years. DPP-4 inhibitorusers without a history of osteoporosis generated337 eventsin 25,471person-years, and those with a history of osteoporosisgenerated 66 events in 1,739 person-years. DPP-4 inhibitor users aged ,65 years old generated 124 events in 12,567 person-years, users aged 65–74 generated 108 events in 8,318 person-years, and users aged $75 generated 171 events in 6,325 person-years.
Recommended publications
  • SGLT2 Inhibitors and Kidney Outcomes in Patients with Chronic Kidney Disease
    Journal of Clinical Medicine Editorial SGLT2 Inhibitors and Kidney Outcomes in Patients with Chronic Kidney Disease Swetha R. Kanduri 1 , Karthik Kovvuru 1, Panupong Hansrivijit 2 , Charat Thongprayoon 3, Saraschandra Vallabhajosyula 4, Aleksandra I. Pivovarova 5 , Api Chewcharat 3, Vishnu Garla 6, Juan Medaura 5 and Wisit Cheungpasitporn 3,5,* 1 Department of Nephrology, Ochsner Medical Center, New Orleans, LA 70121, USA; [email protected] (S.R.K.); [email protected] (K.K.) 2 Department of Internal Medicine, University of Pittsburgh Medical Center Pinnacle, Harrisburg, PA 17105, USA; [email protected] 3 Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA; [email protected] (C.T.); [email protected] (A.C.) 4 Section of Interventional Cardiology, Division of Cardiovascular Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; [email protected] 5 Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39156, USA; [email protected] (A.I.P.); [email protected] (J.M.) 6 Department of Internal Medicine and Mississippi Center for Clinical and Translational Research, University of Mississippi Medical Center, Jackson, MS 39156, USA; [email protected] * Correspondence: [email protected] Received: 20 August 2020; Accepted: 20 August 2020; Published: 24 August 2020 Abstract: Globally, diabetes mellitus is a leading cause of kidney disease, with a critical percent of patients approaching end-stage kidney disease. In the current era, sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as phenomenal agents in halting the progression of kidney disease. Positive effects of SGLT2i are centered on multiple mechanisms, including glycosuric effects, tubule—glomerular feedback, antioxidant, anti-fibrotic, natriuretic, and reduction in cortical hypoxia, alteration in energy metabolism.
    [Show full text]
  • PRODUCT INFORMATION Ipragliflozin Item No
    PRODUCT INFORMATION Ipragliflozin Item No. 22287 CAS Registry No.: 761423-87-4 OH Formal Name: (1S)-1,5-anhydro-1-C-[3-(benzo[b]thien- 2-ylmethyl)-4-fluorophenyl]-D-glucitol OH Synonym: ASP1941 O MF: C21H21FO5S FW: 404.5 S OH Purity: ≥98% OH UV/Vis.: λmax: 231, 267 nm Supplied as: A crystalline solid F Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Ipragliflozin is supplied as a crystalline solid. A stock solution may be made by dissolving the ipragliflozin in the solvent of choice. Ipragliflozin is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide, which should be purged with an inert gas. The solubility of ipragliflozin in these solvents is approximately 30 mg/ml. Ipragliflozin is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, ipragliflozin should first be dissolved in ethanol and then diluted with the aqueous buffer of choice. Ipragliflozin has a solubility of approximately 0.13 mg/ml in a 1:7 solution of ethanol:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. Description Ipragliflozin is a sodium-glucose cotransporter 2 (SGLT2) inhibitor (IC50 = 7.4 nM in CHO cells expressing the human cotransporter).1 It is selective for SGLT2 over SGLT1, SGLT3, SGLT4, SGLT5, and SGLT6 (IC50s = 1.9, 30.4, 15.9, 0.46, and 10.4 µM, respectively). Ipragliflozin (0.1-3 mg/kg) decreases plasma levels of insulin and glucose in an oral glucose tolerance test in a mouse model of diabetes induced by high-fat diet, streptozotocin (STZ; Item No.
    [Show full text]
  • SGLT2) Inhibitors (Gliflozins) in Adults with Type 2 Diabetes (T2DM
    Sodium-glucose cotransporter-2 (SGLT2) inhibitors (Gliflozins) in Adults with Type 2 Diabetes (T2DM) There are currently four SGLT2 inhibitors (canagliflozin, dapagliflozin, empagliflozin and ertugliflozin) licensed in the UK for the management of adults with T2DM. No head to head trials between the SGLT2 inhibitors have been conducted. As at December 2019, clinical outcome data is available for three of the four SGLT2 inhibitors around their cardiovascular effects in people with T2DM. Ertugliflozin is still to report on this data. This document summarises the key prescribing considerations. NICE Technology Appraisal Recommendation NICE makes recommendations for when SGLT2 inhibitors can be considered in adults with T2DM; Hertfordshire Medicines Management Committee Recommendations are in line with NICE guidance: Monotherapy NICE TA 390: Canagliflozin, Dapagliflozin and Empagliflozin and NICE TA 572: Ertugliflozin as monotherapies for treating T2DM Monotherapy recommended as option in adults for whom metformin is contraindicated or not tolerated and when diet & exercise alone do not provide adequate glycaemic control, only if: •a DPP‑4 inhibitor would otherwise be prescribed and •a sulfonylurea or pioglitazone is not appropriate. Dual therapy NICE TA 315: Canagliflozin, NICE TA288: Dapagliflozin, TA 336: Empagliflozin, TA 572: Ertugliflozin as combination therapies for treating T2DM In a dual therapy regimen in combination with metformin is recommended as an option, only if: •a sulfonylurea is contraindicated or not tolerated or •the person is at significant risk of hypoglycaemia or its consequences. In combination with insulin NICE TA 315: Canagliflozin, NICE TA288: Dapagliflozin, TA 336: Empagliflozin in combination with insulin with or without other antidiabetic drugs is recommended as an option.
    [Show full text]
  • SGLT2 Inhibitors in Combination Therapy: from Mechanisms To
    Diabetes Care Volume 41, August 2018 1543 Michael¨ J.B. van Baar, SGLT2 Inhibitors in Combination Charlotte C. van Ruiten, Marcel H.A. Muskiet, Therapy: From Mechanisms to Liselotte van Bloemendaal, Richard G. IJzerman, and PERSPECTIVES IN CARE Clinical Considerations in Type 2 Daniel¨ H. van Raalte Diabetes Management Diabetes Care 2018;41:1543–1556 | https://doi.org/10.2337/dc18-0588 The progressive nature of type 2 diabetes (T2D) requires practitioners to periodically evaluate patients and intensify glucose-lowering treatment once glycemic targets are not attained. With guidelines moving away from a one-size-fits-all approach toward setting patient-centered goals and allowing flexibility in choosing a second-/ third-line drug from the growing number of U.S. Food and Drug Administration– approved glucose-lowering agents, keen personalized management in T2D has become a challenge for health care providers in daily practice. Among the newer generation of glucose-lowering drug classes, sodium–glucose cotransporter 2 inhibitors (SGLT2is), which enhance urinary glucose excretion to lower hyper- glycemia, have made an imposing entrance to the T2D treatment armamentarium. Given their unique insulin-independent mode of action and their favorable efficacy– to–adverse event profile and given their marked benefits on cardiovascular-renal outcome in moderate-to-high risk T2D patients, which led to updates of guidelines and product monographs, the role of this drug class in multidrug regimes is promising. However, despite many speculations based on pharmacokinetic and pharmacodynamic properties, physiological reasoning, and potential synergism, the effects of these agents in terms of glycemic and pleiotropic efficacy when combined with other glucose-lowering drug classes are largely understudied.
    [Show full text]
  • Effect of Ipragliflozin, an SGLT2 Inhibitor, on Cardiac Histopathological T Changes in a Non-Diabetic Rat Model of Cardiomyopathy ⁎ Toshiyuki Takasu , Shoji Takakura
    Life Sciences 230 (2019) 19–27 Contents lists available at ScienceDirect Life Sciences journal homepage: www.elsevier.com/locate/lifescie Effect of ipragliflozin, an SGLT2 inhibitor, on cardiac histopathological T changes in a non-diabetic rat model of cardiomyopathy ⁎ Toshiyuki Takasu , Shoji Takakura Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan ARTICLE INFO ABSTRACT Keywords: Aims: We investigated the effect of the selective sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor Sodium-dependent glucose cotransporter 2 ipragliflozin on cardiac dysfunction and histopathology in a non-diabetic rat model of cardiomyopathy. Ipragliflozin L-proline (PubChem CID: Main methods: Ipragliflozin was mixed with chow (0.01%, w/w) and administered to male DahlS.Z-Leprfa/Leprfa 57339444) (DS/obese) rats for 8 weeks. Male DahlS.Z-Lepr+/Lepr+ (DS/lean) rats of the same age were used as controls. Cardio-protective effect Systolic blood pressure (SBP) and heart rate (HR) were measured every 4 weeks. After 8 weeks of treatment, echocardiography and histopathological examinations were performed. Further, the effect of ipragliflozin on blood and urine parameters were investigated. Key findings: In the DS/obese rats, ipragliflozin delayed the age-related increase in SBP without affecting HR, reduced left ventricular (LV) mass and intraventricular septal thickness in echocardiography, and ameliorated hypertrophy of cardiomyocytes and LV fibrosis in histopathological examination. Although ipragliflozin sig- nificantly increased both urine volume and urinary glucose excretion in DS/obese rats, it did not alterplasma glucose levels. Significance: Ipragliflozin prevented LV hypertrophy and fibrosis in non-diabetic DS/obese rats without affecting plasma glucose levels. These findings suggest that SGLT2 inhibitors have a cardio-protective effect in non-dia- betic patients with cardiomyopathy.
    [Show full text]
  • Identification of SGLT2 Inhibitor Ertugliflozin As a Treatment
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.448921; this version posted June 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Identification of SGLT2 inhibitor Ertugliflozin as a treatment for COVID-19 using computational and experimental paradigm Shalini SaxenaA, Kranti MeherC, Madhuri RotellaC, Subhramanyam VangalaC, Satish ChandranC, Nikhil MalhotraB, Ratnakar Palakodeti B, Sreedhara R Voleti A*, and Uday SaxenaC* A In Silico Discovery Research Academic Services (INDRAS) Pvt. Ltd. 44-347/6, Tirumalanagar, Moula Ali, Hyderabad – 500040, TS, India B Tech Mahindra Gateway Building, Apollo Bunder, Mumbai-400001, Maharashtra, India C Reagene Innovation Pvt. Ltd. 18B, ASPIRE-BioNEST, 3rd Floor, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad – 500046, TS, India *Corresponding Authors email address: [email protected] [email protected] Abstract Drug repurposing can expedite the process of drug development by identifying known drugs which are effective against SARS-CoV-2. The RBD domain of SARS-CoV-2 Spike protein is a promising drug target due to its pivotal role in viral-host attachment. These specific structural domains can be targeted with small molecules or drug to disrupt the viral attachment to the host proteins. In this study, FDA approved Drugbank database were screened using a virtual screening approach and computational chemistry methods. Five drugs were short listed for further profiling based on docking score and binding energies. Further these selected drugs were tested for their in vitro biological activity.
    [Show full text]
  • Overview of Ertugliflozin Vivianne K
    CLINICAL PHARMACOLOGY UPDATE Overview of Ertugliflozin Vivianne K. Nguyen and John R. White, Jr. Introduction combinations with the DPP-4 sita- espite the availability of 12 gliptin (brand name Stegujan) or with different classes of medica- metformin (brand name Segluromet). Dtions, many people with type Ertugliflozin is not approved for the 2 diabetes struggle to maintain gly- treatment of type 1 diabetes, renal im- cemic control (1). Among the many pairment, or ketoacidosis. new antidiabetic medications to have Mechanism of Action emerged in recent years, sodium– As other SGLT2 inhibitors, ertug- glucose cotransporter 2 (SGLT2) liflozin works by blocking glucose inhibitors have proved to be a par- transport from the glomerular filtrate ticularly effective oral treatment for across the apical membrane of the these patients (2). Since the approval proximal epithelial cells, resulting in of the first drug in this class, canagli- increased urinary glucose excretion flozin, by the U.S. Food and Drug and reduced filtered glucose renal re- Administration (FDA) in March absorption. Ertugliflozin is predom- 2013, a total of four SGLT2 agents inantly metabolized by the enzymes have become available (both as single UGT1A9 and UGT2B, with minor and fixed-dose combination formu- contributions by CYP3A4, and even las) (1). In 2017, an estimated 1.7 less by CYP3A5 and CYP2C8 (4). million patients received a dispensed Ertugliflozin does not inhibit CYP450 prescription for an SGLT2 inhibitor isoenzymes (CYPs) 1A2, 2C9, 2C19, from U.S. outpatient retail pharmacies 2C8, 2B6, 2D6, or 3A4 and does not (2). Ertugliflozin is the newest agent induce CYPs 1A2, 2B6, or 3A4 (4).
    [Show full text]
  • (SGLT2) Inhibitors & Kidney Transplantation
    Kidney360 Publish Ahead of Print, published on April 22, 2021 as doi:10.34067/KID.0000732021 Sodium-Glucose Cotransporter 2 Inhibitors & Kidney Transplantation: What Are We Waiting For? Niralee Patel1 Judy Hindi2 Samira S Farouk2 1Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267. 2Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States. Corresponding author: Samira S. Farouk, MD, MS Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029 Email: [email protected] Copyright 2021 by American Society of Nephrology. In recent robust randomized clinical trials (RCT), sodium-glucose cotransporter 2 (SGLT2) inhibitors, (empagliflozin, canagliflozin, dapagliflozin, ertugliflozin), have been shown to dramatically decrease both kidney and cardiovascular (CV) adverse outcomes in patients with diabetic kidney disease (DKD), non- diabetic proteinuric kidney disease, and heart failure (HF) with reduced ejection fraction - with and without the presence of diabetes.1–6 For decades, both the nephrologist and transplant nephrologist’s arsenal for the management of proteinuric kidney disease has been limited to renin-angiotensin-aldosterone system blockade.7 Though SGLT2 inhibitors have taken the nephrology community by storm, patients with kidney transplants (KT) have been notably excluded from large RCT.8–10 Pathophysiologically, it seems likely they would also benefit from these apparent wonder drugs,
    [Show full text]
  • Is an SGLT2 Inhibitor Right for Your Patient with Type 2 Diabetes?
    Katelin M. Lisenby, PharmD, Is an SGLT2 inhibitor right for BCPS; Allison Meyer, PharmD, BCACP; Nicole A. Slater, PharmD, BCACP your patient with type 2 diabetes? Department of Pharmacy Practice, Auburn University, Harrison School of Pharmacy, Metformin isn’t quite doing the job or is contraindicated? Alabama Here’s a look at the patients who may benefit from these [email protected] The authors reported no agents and the monitoring required. potential conflict of interest relevant to this article. CASE 1 u Joe S is a 41-year-old African-American man who PRACTICE comes to your clinic after his employee health screening re- RECOMMENDATIONS vealed elevated triglycerides. The patient has a 3-year history ❯ Consider sodium-glucose of type 2 diabetes mellitus (T2DM); he also has a history of cotransporter 2 (SGLT2) hypertension, gastroesophageal reflux disease, and obstruc- inhibitors as second-line agents in patients with type tive sleep apnea. Mr. S tells you he takes metformin 1000 mg 2 diabetes mellitus who twice daily, but stopped taking his glipizide because he didn’t need mild hemoglobin A1c think it was helping his blood sugar. His last hemoglobin (Hb) reductions (≤1%) and who A1c result was 8.8%, and he is very resistant to starting insulin would benefit from mild to therapy. modest weight and blood The patient’s other medications include enalapril 10 mg/d, pressure reductions. A atorvastatin 10 mg/d, and omeprazole 20 mg/d. Mr. S weighs ❯ Avoid using SGLT2 255.6 lbs (body mass index=34.7), his BP is 140/88 mm Hg, and inhibitors in patients with a his heart rate is 82 beats per minute.
    [Show full text]
  • SGLT2 Inhibitors
    Last updated on February 28, 2021 Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in- development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models. SGLT2 Inhibitors Evidence Summary SGLT2 inhibitors effectively reduce HbA1c, cardiovascular complications from diabetes, and improve heart function in those with heart failure. Neuroprotective Benefit: SGLT2 inhibitors may be beneficial for neurodegenerative diseases in diabetics, but there is currently little rationale for their direct neuroprotective effects. Aging and related health concerns: SGLT2 inhibitors are effective at reducing cardiovascular risks in diabetics and are possibly beneficial in non-diabetic patients with heart failure. Safety: SGLT2 inhibitors are associated with an increased risk of genital infections, though most studies are less than one year in duration. 1 Last updated on February 28, 2021 Availability: Available with a Dose: Canagliflozin (100 Molecular Formula: C24H25FO5S prescription (as brand name or 300mg); Dapagliflozin Molecular weight:
    [Show full text]
  • FDA Revises Labels of SGLT2 Inhibitors for Diabetes to Include Warnings About Too Much Acid in the Blood and Serious Urinary Tract Infections
    FDA revises labels of SGLT2 inhibitors for diabetes to include warnings about too much acid in the blood and serious urinary tract infections This communication provides updated information to the FDA Drug Safety Communication: FDA warns that SGLT2 inhibitors for diabetes may result in a serious condition of too much acid in the blood issued on May 15, 2015. Safety Announcement [12-4-2015] A U.S. Food and Drug Administration (FDA) safety review has resulted in adding warnings to the labels of a specific class of type 2 diabetes medicines called sodium-glucose cotransporter-2 (SGLT2) inhibitors about the risks of too much acid in the blood and of serious urinary tract infections. Both conditions can result in hospitalization. Patients should stop taking their SGLT2 inhibitor and seek medical attention immediately if they have any symptoms of ketoacidosis, a serious condition in which the body produces high levels of blood acids called ketones. Symptoms of ketoacidosis include nausea, vomiting, abdominal pain, tiredness, and trouble breathing. Patients should also be alert for signs and symptoms of a urinary tract infection, such as a feeling of burning when urinating or the need to urinate often or right away; pain in the lower part of the stomach area or pelvis; fever; or blood in the urine. Contact a health care professional if you experience any of these symptoms. Health care professionals should assess for ketoacidosis and urinary tract infections in patients taking SGLT2 inhibitors who present with suggestive symptoms. Ketoacidosis associated with the use of SGLT2 inhibitors can occur even if the blood sugar level is not very high.
    [Show full text]
  • Sitagliptin Versus Ipragliflozin for Type 2 Diabetes in Clinical Practice
    Original Article J Endocrinol Metab. 2019;9(5):151-158 Sitagliptin Versus Ipragliflozin for Type 2 Diabetes in Clinical Practice Ikuro Matsubaa, d, Kotaro Iemitsua, Takehiro Kawataa, Takashi Iizukaa, Masahiro Takihataa, Masahiko Takaia, Shigeru Nakajimaa, Nobuaki Minamia, Shinichi Umezawaa, Akira Kanamoria, Hiroshi Takedaa, Shogo Itoa, Taisuke Kikuchia, Hikaru Amemiyaa, Mizuki Kaneshiroa, Atsuko Mokuboa, Tetsuro Takumaa, Hideo Machimuraa, Keiji Tanakaa, Taro Asakuraa, Akira Kubotaa, Sachio Aoyagia, Kazuhiko Hoshinoa, Masashi Ishikawaa, Mitsuo Obanaa, Nobuo Sasaia, Hideaki Kaneshigea, Masaaki Miyakawaa, Yasushi Tanakab, Yasuo Terauchic Abstract ular filtration rate after 24 weeks was significantly larger in patients treated with sitagliptin than those receiving ipragliflozin (P = 0.012). Background: Dipeptidyl peptidase-4 inhibitors and sodium-glucose Ipragliflozin may be more effective than sitagliptin for cotransporter-2 inhibitors are frequently used to treat type 2 diabetes. Conclusions: Japanese patients with type 2 diabetes who have hypertension, obe- However, there have been no direct comparisons of these antidiabetic sity, and/or renal dysfunction. drugs in Japanese patients with type 2 diabetes. Keywords: Dipeptidyl peptidase-4 inhibitor; Ipragliflozin; Sitaglip- Methods: We retrospectively assessed the effects of treatment with tin; Sodium-glucose cotransporter-2 inhibitor; Type 2 diabetes sitagliptin (a dipeptidyl peptidase-4 inhibitor) for 24 weeks in the ASSET-K study or treatment with ipragliflozin (a sodium-glucose cotransporter-2 inhibitor) for 24 weeks in the ASSIGN-K study. In both studies, patients with poor glycemic control received the study drug in addition to standard care with/without other antidiabetic med- Introduction ications or were switched to the study drug. The effects of each drug on metabolic risk factors (body weight, blood glucose, and lipids), In patients with type 2 diabetes mellitus (T2DM), it is impor- blood pressure, and renal function were compared.
    [Show full text]