Azarijafari Hessam Phd 2018.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Azarijafari Hessam Phd 2018.Pdf UNIVERSITÉ DE SHERBROOKE Faculté de génie Département de génie civil DEVELOPMENT OF A CONSEQUENTIAL DYNAMIC MODEL INCORPORATING VARIABILITY AND UNCERTAINTY ANALYSIS FOR ASSESSING LIFE CYCLE ENVIRONMENTAL IMPACTS OF PAVEMENTS DÉVELOPPEMENT D'UN MODÈLE DYNAMIQUE INCORPORANT L'ANALYSE DE LA VARIABILITÉ ET DE L'INCERTITUDE POUR L'ÉVALUATION DES CONSÉQUENCES ENVIRONNEMENTALES DU CYCLE DE VIE DES CHAUSSÉES Thèse de doctorat Spécialité : génie civil Hessam AZARIJAFARI Sherbrooke (Québec) Canada Juillet 2018 MEMBRES DU JURY Pr. Ben AMOR, Directeur Pr. Ammar YAHIA Codirecteur Pr. Dahai QI Rapporteur Dr. Jeremy GREGORY Évaluateur Dr. Geoffrey GUEST Évaluateur This work is dedicated to my family. ACKNOWLEDGEMENT My journey thus far could never have been such fascinating if it were not because of the following individuals who have made irreplaceable contribution to everything I have achieved. It is why I would like to thank Prof. Ben Amor and Prof. Ammar Yahia for granting me their confidence. I could not have had a better team of directors. You guided me to have a more mature scientific mind, which I am indefinitely grateful and indebted. I would like to thank you for keeping an open door for me all the time, urging me to perfect my research work, as well as filling our collaboration at all levels with pleasure. My special thanks go to Mathieu Courchesne for providing the building energy model and Adam Hayashi and Guillaume Lemieux for the intellectual support from the Canadian cement industry. The statistical data provided by Julie Ruby from the ministry of transportation in Quebec (MTQ) is appreciated. The financial supports of this research project were provided by the Fonds Nature et technologies (FQRNT), the Natural Sciences and Engineering Research Council of Canada (NSERC), the Centre de recherche sur les infrastructures en béton (CRIB), and the Fondation de l’ Université de Sherbrooke. My sincere gratitude goes to all LIRIDE members. I am grateful for the welcoming and warm working group you made with your team spirit and your nice personalities. I will not forget all the funs we had during lunch times and parties as well as all the cake days we celebrated. I also appreciate your encouragement and help for learning and revising my French text and presentations. I am grateful to Prof. Dahai Qi, Dr. Jeremy Gregory, and Dr. Geoffrey Guest for their valuable comments on my dissertation. I am grateful for what I learnt in terms of leadership and cooperation with my friends in ACI- Sherbrooke that helped me to better manage my research work. I truly appreciate your contributions to my professional and personal development. Notably, I would like to thank Prof. Arezki who always supported me in ACI-Sherbrooke. I would like to say a big thank to my brothers for their unconditional love. My sincere thanks go to Jafar for the friendship and help he brought for us in Iran and here. Last but not the least, no words can express my gratitude towards my wife, Motahareh, for her love, support and patience during my rough time and for listening to me during all these evenings. I would like to thank my little son, Ryan, who increases the level of happiness in our family . i RÉSUMÉ Le choix d’une option écologique pour les chaussées parmi plusieurs options constitue un défi pour les gouvernements depuis longtemps. Une quantité importante de matériaux est requise pour la construction des chaussées et le maintien des conditions de service de la circulation au- dessous des seuils de performance. Afin de répondre à la demande en matériaux de construction, des procédés énergivores doivent être mis en place. Ces procédés produisent différents types d'émissions. En outre, il convient de noter que les impacts environnementaux des chaussées ne se limitent seulement pas aux matériaux de construction et aux machines. En effet, la sélection d’un type de chaussée peut influencer, selon ses propriétés, la consommation de carburant des véhicules et les demandes en climatisation des bâtiments avoisinants. Jusqu'à présent, plusieurs impacts environnementaux de matériaux alternatifs pour la construction de chaussées ont été étudiés grâce à la méthode d'analyse du cycle de vie (ACV). Lors d'une ACV de chaussée à grande échelle, visant à examiner les implications ou exigences liées aux politiques, par exemple, il est important d'évaluer les changements induits sur le marché par ces politiques. Ces changements peuvent concerner une modification de la demande pour d'autres produits ayant la même fonction et / ou du volume des coproduits générés. L'ACV conséquentielle (ACVC) est utilisée pour saisir les conséquences environnementales directes et indirectes de la sélection des chaussées. Des études antérieures d'ACVC ont identifié les technologies affectées à long terme dans des phases distinctes du cycle de vie du produit. Les résultats de ces études tendent, cependant, à négliger les impacts des systèmes de produits à court terme. En fait, le manque de comptabilité dynamique dans les études d'ACVC empêche les décideurs d'obtenir une analyse plus complète et mieux informée des flux d'émissions au fil du temps. De plus, compte tenu de la longue phase d'utilisation des infrastructures routières, un grand nombre de paramètres interdépendants change constamment en fonction du temps. Une structure dynamique devient alors essentielle pour relier ces paramètres aux facteurs de caractérisation (FC) dynamiques. De plus, l'application des facteurs d'émission et des changements dans la consommation de carburant ou de l'efficacité peut aider à améliorer la précision du processus décisionnel lié à la sélection des chaussées. Cependant, la distribution temporelle des impacts, induits par les paramètres du cycle de vie de la chaussée, n'est pas ii entièrement prise en compte dans les études précédentes d'ACVC. Les incertitudes et les variabilités doivent être étudiés pour examiner la robustesse des résultats, ce qui n'a pas encore été pris en compte auparavant en ACV. Pour élaborer un cadre plus global dans l'analyse des incertitudes et des variabilités, il est essentiel de considérer les dépendances réciproques entre les sources de variabilité et d'incertitude. En fait, négliger ces interdépendances peut mener à une conclusion entièrement différente de celle obtenue par un échantillonnage indépendant. Jusqu'à présent, aucune méthode n'a été proposée pour évaluer de manière cohérente les sources de variabilité et d'incertitude des ACV de la chaussée, que ce soit dans des contextes conséquentiels ou attributionnels. Le premier objectif de ce projet de recherche vise à développer un cadre global, capable de capturer les interdépendances des paramètres tout en analysant les sources d'incertitude et de variabilité. Le cadre proposé comprend des simulations de Monte Carlo pour la propagation des incertitudes et de différents types des variabilités. Le cadre a été appliqué à une étude de cas d'ACV attributionnelle (ACVA), dans laquelle l'asphalte et le béton ont été comparés. Différentes sources, telles que l'incertitude due à la qualité des données et aux choix méthodologiques ainsi que la variabilité des paramètres, ont été étudiées. Les résultats de l'analyse de Monte Carlo montrent que les choix méthodologiques, telle que la méthode d'allocation, peuvent modifier le scénario le moins impactant sur l’environnement pour quatre catégories intermédiaires. Ces catégories sont principalement affectées par la chaîne d'approvisionnement en pétrole brut. La variabilité des matériaux et des méthodes de construction peut modifier le scénario préféré dans différentes catégories de dommages, à savoir la santé humaine et le réchauffement climatique. En outre, le scénario préféré en matière de qualité de l'écosystème peut être modifié lorsque l'incertitude des paramètres est prise en compte. La raison en est que les scores qualitatifs les plus mauvais sont donnés à l'incertitude géographique du flux élémentaire qui contribue majoritairement à la qualité de l'écosystème (c'est-à-dire le zinc). L'effet combiné des sources d'incertitude et de variabilité pour cette étude de cas empêche le décideur d'en arriver à une conclusion robuste sur la qualité de l'écosystème, la santé humaine et les effets du réchauffement climatique. Cependant, pour la catégorie ressource, le résultat comparatif entre la chaussée en asphalte et en béton est suffisamment iii important et, par conséquent, les sources de variabilités et d'incertitudes ne changent pas les conclusions. Le second objectif de ce projet de recherche est de développer un cadre de travail dynamique pour l'évaluation de l'aspect environnemental des chaussées. De plus, le cadre proposé dans le premier objectif a été adopté pour considérer diverses sources d'incertitude et de variabilité, tels que la qualité des données, les paramètres de modélisation et la variabilité, dans différentes phases du cycle de vie des chaussées. Les changements dynamiques du vecteur de la demande et de la matrice de la technosphère ont été calculés en tenant compte de l'horizon temporel dans lequel les technologies sont affectées. Les composantes du cycle de vie ont été délimitées grâce à une paramétrisation précise de plus de 130 facteurs dépendant du temps. Selon le cadre d'analyse des incertitudes proposé à l'étape précédente, une simulation de Monte Carlo a été menée pour propager les incertitudes et les variabilités du système en divisant les paramètres par l'incertitude de qualité des données, l'incertitude de modélisation et la variabilité des données. La méthode proposée a été appliquée à l'étude de cas d'une chaussée en asphalte (Statu quo) changé en chaussée en béton (choix alternatif). Les résultats montrent qu'une simplification de changements dynamiques dans l'ACV des chaussées peut entraîner une évaluation inexacte des résultats de dommages. Les avantages environnementaux attribués en substituant le scénario du statu quo par l'alternatif sont alors surestimés de 7, 17 et 77% pour respectivement les catégories changement climatique, santé humaine et ressource.
Recommended publications
  • Aging Influence on Rheology Properties of Petroleum-Based Asphalt Modified with Biobinder
    Aging Influence on Rheology Properties of Petroleum-Based Asphalt Modified with Biobinder Julian Mills-Beale, M.ASCE1; Zhanping You, Ph.D., P.E., M.ASCE2; Elham Fini, Ph.D., P.E., M.ASCE3; Boubacar Zada4; Chee Huei Lee5; and Yoke Khin Yap6 Abstract: This paper aims to investigate the viability of using swine waste binder to improve the rheological properties of bituminous asphalt binder. Due to rising bituminous asphalt binder costs, diminishing reserves of crude oil from which asphalt binder is derived, and the gradual paradigm shift toward more environmentally friendly and energy efficient hot-mix asphalt (HMA) mixtures, the asphalt pavement industry is exploring different sustainable alternative binders. Biobinder has the potential to partially or fully replace typical crude-based asphalt. In this paper, biobinder from swine manure is produced by thermochemical liquefaction process at 380°C and 40 MPa (approximately 400 atm) pressure in the absence of oxygen. A Superpave PG 64-22 is then modified with 5% biobinder by total weight of asphalt binder to produce the biobinder. Samples of the base asphalt binder (nonmodified PG 64-22) and samples of asphalt modified with biobinder are characterized by running the Superpave rotational viscosity (RV), dynamic shear rheometer (DSR), and the bending beam rheometer (BBR) tests. Furthermore, Fourier transform infrared (FTIR) spectroscopy investigations were used to validate the chemical bond initiations that caused changes in stiffness and viscosity of the asphalt modified with 5% biobinder from those of base asphalt binder (PG 64-22). The modification resulted in 27% decrease in viscosity of the base binder. The rolling thin film (RTFO)–aged samples of modified binder experienced a 28.9% decrease in average viscosity change when compared with the RTFO-aged samples from the base binder.
    [Show full text]
  • Sustainable Construction With
    Sci.Int.(Lahore),28(3),2351-2356,2016 ISSN 1013-5316; CODEN: SINTE 8 2351 SUSTAINABLE CONSTRUCTION WITH ADVANCED BIOMATERIALS: AN OVERVIEW *Anwar Khitab, Waqas Anwar, Imran Mehmood, Umer Arif Khan, Syed Minhaj Saleem Kazmi, Muhammad Junaid Munir Department of Civil Engineering, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan. Tel: +92-5827-961047, Corresponding Author email: [email protected] ABSTRACT: This document presents an overview of the advanced biomaterials for a sustainable and environment-friendly construction. The materials include concrete, plastics, admixtures, asphalts and soils. Natural evolution allows biomaterials to contain certain properties that are not possible otherwise without consequences. They provide unique properties that are unmatched by their synthetic counterparts. These properties are achieved with time and through natural processes. These naturally evolved properties of biomaterials can be exploited and put in use to fulfill our construction needs. Biomaterials with low or almost zero linear coefficients of thermal expansion make them very versatile construction materials. Their ability to resist any change in length due to temperature changes helps eliminate internal stresses. Biomaterials offer several advantages over synthetic materials like cost effectiveness and environment-friendliness. Dumping of synthetics materials is an environmental dilemma, which can be reduced by using degradable biomaterials. The living bacteria inside concrete heal the cracks, increasing the durability of the structure. Keywords: Overview, biomaterials, construction, environment, heat-resistance, crack-healing. INTRODUCTION material reactions like coupling agents etc. Unlike synthetic Biomaterials are defined as materials that interact with living materials, biomaterials provide similar properties without systems [1]. Considering this very explanation we can go going through numerous chemical reactions.
    [Show full text]
  • STUDY on BIOASPHALT Abhay Pratap Singh1 Piyush Kumar Singh2 Deepu Yadav3 Abhishek Kumar Agrahari4, Ranoo Sharma5
    STUDY ON BIOASPHALT Abhay Pratap Singh1 Piyush Kumar Singh2 Deepu Yadav3 Abhishek Kumar Agrahari4, Ranoo Sharma5 1,2,3,4 UG Students, Department of Civil Engineering, BIT GIDA GORAKHPUR. 5Asst. Prof, Department of Civil Engineering, Buddha institute of Technology, Gida, Gorakhpur , India. ABSTRACT:- The project investigates the utilization of Pyrolysis as a management method for the recycling of yard waste. Pyrolysis is a process encompassing a variety of methods for the thermal degradation of organic substrates in the absence of oxygen. Pyrolysis is a process that has been used for the production of charcoal for millennia. With this method, the yard waste recycling only leads to one product: compost. Pyrolysis of all biomass feedstock’s (including that of yard waste) can produce multiple products: bio char (a solid product) and bio-oil (a liquid product). Bio char can be used as a carbonaceous soil amendment which improves fertility and serves as a carbon sequestering agent, preventing additional greenhouse gas (GHG) emissions. Bio-oil consists of viscous organics which can have a variety of applications, including the potential use as a non-petroleum-based asphalt pavement binder. Both of these products could play roles in reducing greenhouse gas (GHG) emissions from waste management and reducing the demand of fossil fuels within the asphalt industry.The fundamental approach applied in this research is described in a later section. Before discussing these project details, it seems prudent to document the context from which this project emerged. Pyrolyzing yard waste is not an obvious 0 approach for yard waste management or the production of useful by-products.
    [Show full text]
  • Editorial Innovative Materials, New Design Methods, and Advanced Characterization Techniques for Sustainable Asphalt Pavements
    Hindawi Advances in Materials Science and Engineering Volume 2019, Article ID 8241071, 3 pages https://doi.org/10.1155/2019/8241071 Editorial Innovative Materials, New Design Methods, and Advanced Characterization Techniques for Sustainable Asphalt Pavements Ghazi G. Al-Khateeb ,1 Syed W. Haider,2 Mujib Rahman,3 and Munir Nazzal4 1Department of Civil and Environmental Engineering, University of Sharjah, Sharjah, UAE 2Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA 3Department of Civil and Environmental Engineering, Brunel University London, Uxbridge, London, UK 4Department of Civil Engineering, Ohio University, Athens, Ohio, USA Correspondence should be addressed to Ghazi G. Al-Khateeb; [email protected] Received 27 March 2019; Accepted 27 March 2019; Published 16 April 2019 Copyright © 2019 Ghazi G. Al-Khateeb et al. &is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. New and innovative materials are continually being performance, (2) the mechanics and performance of com- researched and developed by asphalt technologists, partic- posite paving materials, and (3) new design and charac- ularly in the last decade to find the most economical, effi- terization methods and modeling. cient, and environmentally friendly product to use on roads. A study by W. S. Brito et al. assessed the reuse of fly ash Parallel to that, advanced characterization techniques and of Bayer process boilers in geopolymer synthesis. X-ray methodologies are also being developed to characterize fluorescence (XRF) and scanning electron microscopy materials for best results.
    [Show full text]
  • Peter C.K. Lau Editor Quality Living Through Chemurgy and Green Chemistry Green Chemistry and Sustainable Technology
    Green Chemistry and Sustainable Technology Peter C.K. Lau Editor Quality Living Through Chemurgy and Green Chemistry Green Chemistry and Sustainable Technology Series editors Prof. Liang-Nian He, State Key Lab of Elemento-Organic Chemistry, Nankai University, Tianjin, China Prof. Robin D. Rogers, Department of Chemistry, McGill University, Montreal, Canada Prof. Dangsheng Su, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China; Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany Prof. Pietro Tundo, Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy Prof. Z. Conrad Zhang, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China Aims and Scope The series Green Chemistry and Sustainable Technology aims to present cutting-edge research and important advances in green chemistry, green chemical engineering and sustainable industrial technology. The scope of coverage includes (but is not limited to): – Environmentally benign chemical synthesis and processes (green catalysis, green solvents and reagents, atom-economy synthetic methods etc.) – Green chemicals and energy produced from renewable resources (biomass, carbon dioxide etc.) – Novel materials and technologies for energy production and storage (biofuels and bioenergies, hydrogen, fuel cells, solar cells, lithium-ion batteries etc.) – Green chemical engineering processes (process integration,
    [Show full text]
  • Bioasphalt and Biochar from Pyrolysis of Urban Yard Waste by Daniel R
    Bioasphalt and Biochar from Pyrolysis of Urban Yard Waste by Daniel R. Hill Submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Civil Engineering Case Western Reserve University January 2012 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _Daniel R. Hill__________________________________________ candidate for the _Master of Science________________degree*. (signed)_Aaron A. Jennings________________________________ (chair of the committee) _David Zeng_____________________________________ _Xiong “Bill” Yu__________________________________ ________________________________________________ (date) _4 August 2011_________________ *We also certify that written approval has been obtained for any proprietary material contained therein. ii Table of Contents List of Tables……………………………………………………………………………..iii List of Figures……………………………………………………………………………..v Acknowledgements……………………………………………………………………..viii Abstract…………………………………………………………………………………...ix 1. Introduction ......................................................................................................................2 2.1. Recent Interest in Pyrolysis as a Sustainable Technology ....................................... 3 2.2. Desirability of Non-Petroleum-Based Asphalt Binders ......................................... 10 2. Literature Review...........................................................................................................12 2.1. Yard Waste Generation and Management.............................................................
    [Show full text]
  • Asphalt Modified with Biomaterials As Eco-Friendly and Sustainable Modifiers 5
    Chapter 1 Asphalt Modified withwith BiomaterialsBiomaterials asas Eco-FriendlyEco-Friendly and Sustainable Modifiers Ragab Abd Eltawab AbdEltawab Abd El-latief Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.76832 Abstract High construction costs, when combined with awareness regarding environmental stew- ardship have encouraged the use of waste and renewable resources in asphalt modifi - cation. Increasing energy costs and the strong worldwide demand for petroleum have encouraged the development of alternative binders to modify or replace asphalt binders. The benefits of using alternative binders are that they can help save natural resources and reduce energy consumption while maintaining and in some cases improving asphalt performance. Common alternative binders include engine oil residue, bio-binder, soy- bean oil, palm oil, fossil fuel, swine waste, and materials from pyrolysis. Chemical com- positions of the majority of these alternative binders are similar to those of unmodified asphalt binders (e.g. Resin, saturates, aromatics, and asphaltene). On the other hand, tests indicate the wide variability in the properties of alternative binders. Also, the chemi- cal modification mechanism for asphalt with alternative binders depends clearly on the unmodified asphalt and is consequently not well understood. For energy sustainabil- ity, environment-friendly materials and an urgent need for infrastructure rehabilita- tion that more research is needed to evaluate the alternative binders for use in asphalt modification. The alternative binders should have moisture resistance and good aging characteristics. Keywords: asphalt, sustainable, alternative binders, biomaterials, eco-friendly, bio-binder © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons © 2018 The Author(s).
    [Show full text]
  • Emerging Trends in Greener Pavements
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 2 Issue 2, February- 2013 Emerging Trends in Greener Pavements Vignesh H*, Ramesh Babu N.G, Manivasagan V, Suganya S and Eajas Basha M Department of Biotechnology, Adhiyamaan College of Engineering (Autonomous), Hosur-635109, Tamil Nadu, India *Corresponding Author Vignesh H DepartmentIJERT of Biotechnology, Adhiyamaan CollegeIJERT of Engineering (Autonomous), Hosur-635109, Tamil Nadu, India www.ijert.org 1 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 2 Issue 2, February- 2013 Abstract 1. Introduction The traditional, commercial and the The traditional, commercial most commonly used method for and the most commonly used method paving roads and pavements is for paving roads and pavements is asphalting. Asphalt also known as asphalting. Due to its adverse effects bitumen is a sticky, black and highly and increase in the rate of global viscous liquid or semi-solid form of warming, finding a newer method petroleum entirely soluble in carbon was mandatory. The green revolution disulfide, and composed primarily of paved the way to overcome those highly condensed polycyclic adverse effects by the usage of aromatic hydrocarbons. It contains renewable resources and wastes. This toxic, heavy metals including nickel, biologically modified form of lead, mercury, vanadium, chromium, Asphalt is called BioAsphalt. In this mercury, arsenic and selenium. review, the effects of traditional Oxidation can cause deterioration pavements, their properties and how via long-term aging and eventually to overcome those effects by using result in cracking of asphalt eco-friendly methods have been pavements. Due to the adverse discussed. effects of asphalting, greener method was mandatory.
    [Show full text]
  • The Use of Recycled and Innovative Materials in Asphalt Concrete Pavements
    The Use of Recycled and Innovative Materials in Asphalt Concrete Pavements Luke Kirby Bradley University 1 Table of Contents Introduction………………………….…………………………………………………………...3 Reclaimed Asphalt Pavements ……………………...………………………………………..3 Plastic Wastes …………………………………………………………………...……………..4 Used Rubber Tires………………………………….….…….…………………………...…….5 Recycled Shingles…....………………..…………………………………………………….....6 Used Motor Oil…………………………………………………………………………………..7 Bio Asphalt……………………………………………………………………………………….7 Summary…………………………………………………………………………………...…….8 References ………………………………………………………………………………………9 Photos…………………………………………………………………………………………..10 2 Introduction Asphalt roads were first introduced to the world in 1870, so apparently, they have been vastly improved since then. However, in our current society, due to environmental and economic concerns, merely creating new asphalt roads is just not good enough. To overcome this problem, many of today’s roads that are re-paved, or even entirely new roads, are made with recycled materials in the pavement. Recycled materials can be used as aggregate or binder in the asphalt mix, and different materials are better at being one rather than another. New materials are continually being researched and developed to find the most efficient, economical product to use on our roads. In this report, different types of recycled materials are mentioned and discussed how they can be used in recycled pavements. Reclaimed Asphalt Pavements One of the most common materials used in these pavements is recycled asphalt. Recycled asphalt
    [Show full text]
  • Development of Non-Petroleum-Based Binders for Use in Flexible October 2015 Pavements – Phase II 6
    Development of Non-Petroleum- Based Binders for Use in Flexible Pavements – Phase II Final Report October 2015 Sponsored by Iowa Highway Research Board (IHRB Project TR-650) Iowa Department of Transportation (InTrans Project 12-447) Federal Highway Administration About InTrans The mission of the Institute for Transportation (InTrans) at Iowa State University is to develop and implement innovative methods, materials, and technologies for improving transportation efficiency, safety, reliability, and sustainability while improving the learning environment of students, faculty, and staff in transportation-related fields. About AMPP The Asphalt Materials and Pavements Program (AMPP) at InTrans specializes in improving asphalt materials and pavements through research and technology transfer and in developing students’ technical skills in asphalt. Disclaimer Notice The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the sponsors. The sponsors assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specification, or regulation. The sponsors do not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document. ISU Non-Discrimination Statement Iowa State University does not discriminate on the basis of race, color, age, ethnicity, religion, national origin, pregnancy, sexual orientation, gender identity, genetic information, sex, marital status, disability, or status as a U.S. veteran. Inquiries regarding non-discrimination policies may be directed to Office of Equal Opportunity, Title IX/ADA Coordinator, and Affirmative Action Officer, 3350 Beardshear Hall, Ames, Iowa 50011, 515-294-7612, email [email protected].
    [Show full text]
  • Fish Oil in Icelandic Road Constructions
    Degree Projekt in HigHway anD railway engineering stockHolm, sweDen 2014 Fish Oil in Icelandic Road Constructions A case study of bituminous binder mixtures modified with bio-oil ARNAR ÁGÚSTSSON TSC-MT 14-019 KTH royal insTiTuTe of TecHnology www.kth.se SCHOOL OF ARCHITECTURE AND THE BUILT ENVIRONMENT Fish Oil in Icelandic Road Constructions A case study of bituminous binder mixtures modified with bio-oil AUTHOR: ARNAR ÁGÚSTSSON SUPERVISOR: NICOLE KRINGOS Master of Science Thesis KTH Civil and Architectural Engineering Highway and Railway Engineering SE-100 44 STOCKHOLM . Master of Science Thesis MMK 2014:XX MDA XXX Fish Oil in Icelandic Road Constructions Arnar Ágústsson Approved: Examiner: Supervisor: 2014-06-12 Björn Birgisson Nicole Kringos . Abstract . In this thesis an extensive background study on the use of bio-oil modified binder, used in surface dressings in Iceland, was carried out. Surface dressings, or chip seals, are paved by first spraying out binder and then distributing aggregates over the surface before compaction. The bio-oil, most notably fish oil ethyl ester or rape seed oil, is included in a binder mixture to lower its viscosity, enabling the binder to be sprayed out at a lower temperature than unmodified bitumen. In January 2013, severe bleeding of binder was noticed on road sections paved with bio-oil modified surface dressings in the northern part of Ice- land. Following the bleeding, the Icelandic Road and Coastal Administration (IRCA) sent samples of the sections in question, as well as binder samples, for testing at the laboratory of Highway and Railway Engineering at KTH Royal Institute of Technology (KTH) in Stockholm, Sweden.
    [Show full text]
  • Peak Asphalt: the Return of Gravel Roads
    The Oil Drum: Europe | Peak asphalt: the return of gravel roads http://europe.theoildrum.com/node/6349 Peak asphalt: the return of gravel roads Posted by Ugo Bardi on April 5, 2010 - 9:10am in The Oil Drum: Europe Topic: Environment/Sustainability Tags: bitumen, paved roads, peak oil [list all tags] The classic Ford model T; made from 1908 to 1928. Note the high chassis, soft suspensions and light wheels; this car was designed for running on unpaved roads. With asphalt - made from crude oil - becoming more and more expensive, are we going back to this kind of vehicles? Peak oil is said to be an inversion of tendency of the economy; but also of many things of everyday life that seem to have started to go back to earlier times. The last inversion of tendency comes from a series of articles in the press that describe the return of gravel roads. For the time being, that seems to be happening mainly in rural areas of the US, as described, for instance in USA-today. In Europe, there are fewer reports on this point, although it seems that the same situation is developing in northern countries. In places such as Finland, the cold climate places a higher stress on paved roads and forces the return to gravel roads. But the lack of press reports doesn't mean that the problem is not there: if you travel to Italy this year, you'll see that a lot of paved roads are in a pitiful state: full of potholes. One problem is the increasing costs of maintenance.
    [Show full text]