Polar Oceans FCO Report FINAL V2 Jamie
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
'Landscapes of Exploration' Education Pack
Landscapes of Exploration February 11 – 31 March 2012 Peninsula Arts Gallery Education Pack Cover image courtesy of British Antarctic Survey Cover image: Launch of a radiosonde meteorological balloon by a scientist/meteorologist at Halley Research Station. Atmospheric scientists at Rothera and Halley Research Stations collect data about the atmosphere above Antarctica this is done by launching radiosonde meteorological balloons which have small sensors and a transmitter attached to them. The balloons are filled with helium and so rise high into the Antarctic atmosphere sampling the air and transmitting the data back to the station far below. A radiosonde meteorological balloon holds an impressive 2,000 litres of helium, giving it enough lift to climb for up to two hours. Helium is lighter than air and so causes the balloon to rise rapidly through the atmosphere, while the instruments beneath it sample all the required data and transmit the information back to the surface. - Permissions for information on radiosonde meteorological balloons kindly provided by British Antarctic Survey. For a full activity sheet on how scientists collect data from the air in Antarctica please visit the Discovering Antarctica website www.discoveringantarctica.org.uk and select resources www.discoveringantarctica.org.uk has been developed jointly by the Royal Geographical Society, with IBG0 and the British Antarctic Survey, with funding from the Foreign and Commonwealth Office. The Royal Geographical Society (with IBG) supports geography in universities and schools, through expeditions and fieldwork and with the public and policy makers. Full details about the Society’s work, and how you can become a member, is available on www.rgs.org All activities in this handbook that are from www.discoveringantarctica.org.uk will be clearly identified. -
Advances in Polar Ecology Series Ed.: D
Advances in Polar Ecology Series Ed.: D. Piepenburg In recent years, the polar regions have received increased scientific and public interest. Both the Arctic and Antarctic have been recognized as key regions in the regulation of the global climate and polar ecosystems have been identified to be particularly susceptible to the ongoing environmental changes. Consequently, the international efforts in polar research have been enhanced considerably, and a wealth of new findings is being produced at a growing rate by the international community of polar researchers. The aim of the book series Advances in Polar Ecology is to foster the progress in the scientific knowledge about the polar and sub-polar regions of both hemispheres by contributing to the fast and wide-ranging dissemination of novel scientific information gained from recent studies of sea, freshwater and land biota among polar researchers, environmental managers and policy makers. Advances in Polar Ecology’s broad ecology- oriented scope encompasses environmental and biological research of both recent and past ecosystems. The Series offers an outlet to publish contributions (monographs, edited works, conference proceedings, etc.) addressing scientific topics that need more comprehensive and in-depth analysis than the length of typical journal articles allow for. These include, but are not limited to, thorough accounts of the current status of active research areas of wide importance that outline promising perspectives for future research. An international editorial board oversees the rigorous peer review that all contributions will be subjected to. Springer books available as Recently published: Printed book Available from springer.com/shop J. Berge, G. Johnsen, J. -
Mitigation of Arctic Tundra Surface Warming by Plant Evapotranspiration: Complete Energy Balance Component Estimation Using LANDSAT Satellite Data
remote sensing Article Mitigation of Arctic Tundra Surface Warming by Plant Evapotranspiration: Complete Energy Balance Component Estimation Using LANDSAT Satellite Data Václav Nedbal 1,* , Kamil Láska 2,3 and Jakub Brom 1 1 Faculty of Agriculture, University of South Bohemia in Ceskˇ é Budˇejovice,Studentská 1668, 370 05 Ceskˇ é Budˇejovice,Czech Republic; [email protected] 2 Department of Geography, Faculty of Science, Masaryk University, Kotláˇrská 2, 611 37 Brno, Czech Republic; [email protected] 3 Centre for Polar Ecology, Faculty of Science, University of South Bohemia in Ceskˇ é Budˇejovice,Na Zlaté stoce 3, 370 05 Ceskˇ é Budˇejovice,Czech Republic * Correspondence: [email protected] Received: 19 September 2020; Accepted: 14 October 2020; Published: 16 October 2020 Abstract: Global climate change is expected to cause a strong temperature increase in the polar regions, accompanied by a reduction in snow cover. Due to a lower albedo, bare ground absorbs more solar energy and its temperature can increase more. Here, we show that vegetation growth in such bare ground areas can efficiently mitigate surface warming in the Arctic, thanks to plant evapotranspiration. In order to establish a comprehensive energy balance for the Arctic land surface, we used an ensemble of methods of ground-based measurements and multispectral satellite image analysis. Our estimate is that the low vegetation of polar tundra transforms 26% more solar energy into evapotranspiration than bare ground in clear sky weather. Due to its isolation properties, vegetation further reduces ground heat flux under the surface by ~4%, compared to bare areas, thus lowering the increase in subsurface temperature. -
2. Disc Resources
An early map of the world Resource D1 A map of the world drawn in 1570 shows ‘Terra Australis Nondum Cognita’ (the unknown south land). National Library of Australia Expeditions to Antarctica 1770 –1830 and 1910 –1913 Resource D2 Voyages to Antarctica 1770–1830 1772–75 1819–20 1820–21 Cook (Britain) Bransfield (Britain) Palmer (United States) ▼ ▼ ▼ ▼ ▼ Resolution and Adventure Williams Hero 1819 1819–21 1820–21 Smith (Britain) ▼ Bellingshausen (Russia) Davis (United States) ▼ ▼ ▼ Williams Vostok and Mirnyi Cecilia 1822–24 Weddell (Britain) ▼ Jane and Beaufoy 1830–32 Biscoe (Britain) ★ ▼ Tula and Lively South Pole expeditions 1910–13 1910–12 1910–13 Amundsen (Norway) Scott (Britain) sledge ▼ ▼ ship ▼ Source: Both maps American Geographical Society Source: Major voyages to Antarctica during the 19th century Resource D3 Voyage leader Date Nationality Ships Most southerly Achievements latitude reached Bellingshausen 1819–21 Russian Vostok and Mirnyi 69˚53’S Circumnavigated Antarctica. Discovered Peter Iøy and Alexander Island. Charted the coast round South Georgia, the South Shetland Islands and the South Sandwich Islands. Made the earliest sighting of the Antarctic continent. Dumont d’Urville 1837–40 French Astrolabe and Zeelée 66°S Discovered Terre Adélie in 1840. The expedition made extensive natural history collections. Wilkes 1838–42 United States Vincennes and Followed the edge of the East Antarctic pack ice for 2400 km, 6 other vessels confirming the existence of the Antarctic continent. Ross 1839–43 British Erebus and Terror 78°17’S Discovered the Transantarctic Mountains, Ross Ice Shelf, Ross Island and the volcanoes Erebus and Terror. The expedition made comprehensive magnetic measurements and natural history collections. -
UK Funding and National Facilities (Research Vessel Facilities and Equipment)
UK Funding and National Facilities (Research Vessel Facilities and Equipment) Lisa McNeill and the UK community National Oceanography Centre Southampton University of Southampton Research Council Funding • Natural Environment Research Council primary funding source – Part of Research Councils UK (RCUK) – Potential to apply to other RC programmes e.g., EPSRC (e.g. for engineering related technology development) • A: Responsive mode (blue skies). Includes Urgency Funds • B: Research Themes (part of current focus – increasingly strategic, applied and impact focused). Relevant themes: – Forecasting and mitigation of natural hazards (includes “Building resilience in earthquake-prone and volcanic regions”) – Earth System Science – Sustainable Use of Natural Resources • Increasing cross Research Council themes and programmes, e.g.: – Living With Environmental Change • Impact of current economy: – Reduction of overall NERC budget in real terms – Focused on significant capital budget reduction – “Protecting front line science” through various measures including efficiency savings – External funds to support major capital investments, e.g., RRS Discovery replacement – Maintaining share of the budget for responsive mode research funding, although implementing “demand management” IODP-UKIODP • UKIODP also funded through NERC, with associated research funding • This includes funds for site survey, post-cruise and other related research International Collaboration • Many examples of co-funded research • Usage of barter/joint agreements for research -
Written Evidence Submitted by the British Antarctic Survey and NERC Arctic Office (CLI0009)
Written evidence submitted by the British Antarctic Survey and NERC Arctic Office (CLI0009) Summary The Polar Regions are the regions on Earth most sensitive to climate change. What happens in the remote Polar Regions affects every person on this planet through the inter-related complexities of our global Earth system. International collaboration and environmental diplomacy enable UK polar scientists to undertake world-class research in remote and challenging polar environments on topics such as climate change, environmental management, non-native species, biosecurity, sustainable fishing and tourism. The British Antarctic Survey and the NERC Arctic Office work closely with the FCO to deliver highly significant IPCC reports on climate change in the Polar Regions, and to enable participation in the Arctic Council’s Working Groups, Expert Groups and Taskforces. The FCO Polar Regions Department works with the UK and international science community on award-winning education programmes for schools, public and international audiences. Submitted by: Professor Dame Jane Francis, Director British Antarctic Survey Henry Burgess, Head of NERC Arctic Office Linda Capper, Head of Communications, British Antarctic Survey 1. The British Antarctic Survey (BAS) is a Research Centre of the Natural Environment Research Council (UKRI-NERC) based in Cambridge, whose focus is science in the Polar Regions. In this role BAS works closely with the Polar Regions Department of the FCO. 2. The mission of BAS is to undertake world class science in the Polar Regions and to be the UK permanent presence in Antarctica and in South Georgia and the South Sandwich Islands (SGSSI). This is outlined in a formal MoU between BAS, UKRI-NERC, FCO, and BEIS. -
2021 Report for the First Stage of the Diversity in Polar Science Initiative
2021 REPORT FOR THE FIRST STAGE OF THE DIVERSITY IN POLAR SCIENCE INITIATIVE Written by Donna Frater 2021 Report for the first stage of the Diversity in Polar Science Initiative Contents PURPOSE................................................................................................................................................. 2 EXECUTIVE SUMMARY ............................................................................................................................ 2 INTRODUCTION ...................................................................................................................................... 2 Steering Committee ........................................................................................................................... 3 British Antarctic Survey participants .................................................................................................. 4 Wider UK Polar community ............................................................................................................... 4 PROJECT OUTCOMES .............................................................................................................................. 4 KEY OUTCOMES EVALUATION ................................................................................................................ 5 PROGRESS OF THE INITIATIVE – ENGAGEMENT, AWARENESS AND IMPACT ....................................... 17 Engagement with key stakeholder groups and organisations ........................................................ -
Dynamics of CO2 Evolution of Arctic Soils from Northern Siberia and Scandinavia
Dynamics of CO2 evolution of Arctic soils from Northern Siberia and Scandinavia Manfred Bölter*, Rolf Möller, Wiebke Müller-Lupp, and Nathalie Soethe Institute for Polar Ecology, University Kiel, Wischhofstr. 1-3, Bldg. 12, 24148 Kiel, Germany *Corresponding author: [email protected] 1. INTRODUCTION Growing interest in soil respiration in Arctic environments has opened wide research fields in microbial physiology and models associated therewith (Shivaji 2004). Much interest has been focused on metabolism in cold environments, with special emphasis on CO2 and CH4 evolution from tundra soils (Nadelhoffer et al. 1997, Vourlitis and Oechel 1997a,b). For modeling approaches, however, it is important to include the variability of microbial communities and their reactions to temperature shifts, i.e., the possible individual adaptations to temperature spans and related shifts in Q10 values of metabolic activity, which may indicate significant alterations in metabolic processes that point to important ecological factors to consider in the study of soil biological processes (Nadelhoffer et al. 1991, Sjögertsen and Wookey 2002). Special attention must be paid to processes at the cellular and subcellular level, and to the enzymes and substrates involved: an investigative effort that constitutes a crucial step in linking landscape modeling to small-scale processes. Soil carbon loss, generally termed soil respiration, is principally due to microbial and root respiration. Its measure can be defined in three ways (Haber 1958), i) the “physiological line”, ii) the “physical line”, and iii) the “ecological line”. The physiological line is mainly focused on the efficiency of soil organisms (and roots) and the reaction potential to the various environmental influences. -
The Centenary of the Scott Expedition to Antarctica and of the United Kingdom’S Enduring Scientific Legacy and Ongoing Presence There”
Debate on 18 October: Scott Expedition to Antarctica and Scientific Legacy This Library Note provides background reading for the debate to be held on Thursday, 18 October: “the centenary of the Scott Expedition to Antarctica and of the United Kingdom’s enduring scientific legacy and ongoing presence there” The Note provides information on Antarctica’s geography and environment; provides a history of its exploration; outlines the international agreements that govern the territory; and summarises international scientific cooperation and the UK’s continuing role and presence. Ian Cruse 15 October 2012 LLN 2012/034 House of Lords Library Notes are compiled for the benefit of Members of the House of Lords and their personal staff, to provide impartial, politically balanced briefing on subjects likely to be of interest to Members of the Lords. Authors are available to discuss the contents of the Notes with the Members and their staff but cannot advise members of the general public. Any comments on Library Notes should be sent to the Head of Research Services, House of Lords Library, London SW1A 0PW or emailed to [email protected]. Table of Contents 1.1 Geophysics of Antarctica ....................................................................................... 1 1.2 Environmental Concerns about the Antarctic ......................................................... 2 2.1 Britain’s Early Interest in the Antarctic .................................................................... 4 2.2 Heroic Age of Antarctic Exploration ....................................................................... -
Inhomogeneity of the Surface Air Temperature Record from Halley, Antarctica
15 JUNE 2021 K I N G E T A L . 4771 Inhomogeneity of the Surface Air Temperature Record from Halley, Antarctica a a a a a a JOHN C. KING, JOHN TURNER, STEVE COLWELL, HUA LU, ANDREW ORR, TONY PHILLIPS, a a J. SCOTT HOSKING, AND GARETH J. MARSHALL a British Antarctic Survey, Cambridge, United Kingdom (Manuscript received 25 September 2020, in final form 10 March 2021) ABSTRACT: Commencing in 1956, observations made at Halley Research Station in Antarctica provide one of the longest continuous series of near-surface temperature observations from the Antarctic continent. Since few other records of comparable length are available, the Halley record has been used extensively in studies of long-term Antarctic climate variability and change. The record does not, however, come from a single location but is a composite of observations from a sequence of seven stations, all situated on the Brunt Ice Shelf, that range from around 10 to 50 km in distance from the coast. Until now, it has generally been assumed that temperature data from all of these stations could be combined into a single composite record with no adjustment. Here, we examine this assumption of homogeneity. Application of a statistical changepoint algorithm to the composite record detects a sudden cooling associated with the move from Halley IV to Halley V station in 1992. We show that this temperature step is consistent with local temperature gradients measured by a network of automatic weather stations and with those simulated by a high-resolution atmospheric model. These temperature gradients are strongest in the coastal region and result from the onshore advection of maritime air. -
A Database of Plant Traits Spanning the Tundra Biome
Received: 15 November 2017 | Revised: 11 July 2018 | Accepted: 20 July 2018 DOI: 10.1111/geb.12821 DATA PAPER Tundra Trait Team: A database of plant traits spanning the tundra biome Anne D. Bjorkman1,2,3 | Isla H. Myers‐Smith1 | Sarah C. Elmendorf4,5,6 | Signe Normand2,7,8 | Haydn J. D. Thomas1 | Juha M. Alatalo9 | Heather Alexander10 | Alba Anadon‐Rosell11,12,13 | Sandra Angers‐Blondin1 | Yang Bai14 | Gaurav Baruah15 | Mariska te Beest16,17 | Logan Berner18 | Robert G. Björk19,20 | Daan Blok21 | Helge Bruelheide22,23 | Agata Buchwal24,25 | Allan Buras26 | Michele Carbognani27 | Katherine Christie28 | Laura S. Collier29 | Elisabeth J. Cooper30 | J. Hans C. Cornelissen31 | Katharine J. M. Dickinson32 | Stefan Dullinger33 | Bo Elberling34 | Anu Eskelinen35,23,36 | Bruce C. Forbes37 | Esther R. Frei38,39 | Maitane Iturrate‐Garcia15 | Megan K. Good40 | Oriol Grau41,42 | Peter Green43 | Michelle Greve44 | Paul Grogan45 | Sylvia Haider22,23 | Tomáš Hájek46,47 | Martin Hallinger48 | Konsta Happonen49 | Karen A. Harper50 | Monique M. P. D. Heijmans51 | Gregory H. R. Henry39 | Luise Hermanutz29 | Rebecca E. Hewitt52 | Robert D. Hollister53 | James Hudson54 | Karl Hülber33 | Colleen M. Iversen55 | Francesca Jaroszynska56,57 | Borja Jiménez‐Alfaro58 | Jill Johnstone59 | Rasmus Halfdan Jorgesen60 | Elina Kaarlejärvi14,61 | Rebecca Klady62 | Jitka Klimešová46 | Annika Korsten32 | Sara Kuleza59 | Aino Kulonen57 | Laurent J. Lamarque63 | Trevor Lantz64 | Amanda Lavalle65 | Jonas J. Lembrechts66 | Esther Lévesque63 | Chelsea J. Little15,67 | Miska Luoto49 | Petr Macek47 | Michelle C. Mack52 | Rabia Mathakutha44 | Anders Michelsen34,68 | Ann Milbau69 | Ulf Molau70 | John W. Morgan43 | Martin Alfons Mörsdorf30 | Jacob Nabe‐Nielsen71 | Sigrid Schøler Nielsen2 | Josep M. Ninot11,12 | Steven F. Oberbauer72 | Johan Olofsson16 | Vladimir G. Onipchenko73 | Alessandro Petraglia27 | Catherine Pickering74 | Janet S. -
Travel to and from Antarctica: 2019/20
Travel To and From Antarctica: 2019/20 Coronavirus and travel to Antarctica All individuals who have recently visited China should be in quarantine/self-isolation and symptom free for 2 weeks before traveling to Antarctica or joining a BAS ship. Any recent travel to China should be identified to the BAS Polar Operations Support Team. Any deploying personnel should not travel with any flu-like illness. If you later develop any symptoms please contact the ship/station Doctor or contact BASMU. General advice can be found at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 1. General: a. Travel by the most direct and convenient route at the start of your tour to Antarctica will be arranged for you by British Antarctic Survey (BAS). You will not normally have the option to make your own arrangements for travelling south. If this is likely to cause you significant inconvenience, please contact the Polar Operations Support Team as soon as possible, contact details at the end of this notice. b. You will be able to view your planned travel via the SOUTH database. For those external to BAS, a password and link to view your travel remotely will be provided by early September 2019. c. It is an individual’s responsibility to obtain any required visas. All non-UK citizens are advised to check whether they need visas for entry (even in transit) for Chile, South Africa and Falkland Islands. d. Approximately 2 weeks before your planned departure date, the Support Team will contact you by e-mail with travel details for the southbound journey.