Available online www.jsaer.com Journal of Scientific and Engineering Research, 2019, 6(7):89-93 ISSN: 2394-2630 Research Article CODEN(USA): JSERBR Some Inequalities about Trace of Matrix TU Yuanyuan*1, SU Runqing2 1Department of Mathematics, Taizhou College, Nanjing Normal University, Taizhou 225300, China Email:
[email protected] 2College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, 210044, China Abstract In this paper, we studied the inequality of trace by using the properties of the block matrix, singular value and eigenvalue of the matrix. As a result, some new inequalities about trace of matrix under certain conditions are given, at the same time, we extend the corresponding results. Keywords eigenvalue, singular value, trace, inequality 1. Introduction For a complex number x a ib , where a,b are all real, we write Re x a, Im x b , as usual , let I n mn be an n n unit matrix, M be the set of m n complex matrices, diag d1,,L dn be the diagonal matrix with diagonal elements dd1,,L n , if A be a matrix, denote the eigenvalues of by i A, H the singular values of A by i A, the trace of by trA , the associate matrix of A by A , A be a semi- positive definite matrix if be a Herimite matrix and i A 0. In 1937 , Von Neumann gave the famous inequality [1] n (1.1) |tr ( AB ) | ii ( A ) ( B ), i1 where AB, are nn complex matrices. Scholars were very active in the study of this inequality, and obtained many achievements.