An Abstract of the Thesis Of

Total Page:16

File Type:pdf, Size:1020Kb

An Abstract of the Thesis Of AN ABSTRACT OF THE THESIS OF Suhail Alhejji for the degree of Master of Science in Geology presented on June 3, 2019. Title: Timing and Composition of Volcanism at Harrat Ithnayn, Western Saudi Arabia. Abstract approved: ______________________________________________________ Adam J.R. Kent Western Saudi Arabia hosts a number of young volcanic fields, known as “Harrats”. Harrats cover a significant proportion of western Saudi Arabia and are associated with significant volcanic hazards. However, the ultimate cause of volcanic activity remains unclear. Younger volcanism (<12 Ma) is clearly represented by the north-south-trending region known as the Makkah-Madinah-Nafud (MMN) line, which consists of three moderate sized volcanic fields: Harrat Rahat, Harrat Khaybar, and Harrat Ithnayn. Harrat Ithnayn is the northern-most and the least studied volcanic field of the MMN line, and it has been suggested that Ithnayn represents the youngest field produced by age progressive volcanism along the MMN line. Harrat Ithnayn is thus a critical piece in the puzzle in determining the causes of the volcanic activity in the MMN line region. This research focuses primarily on investigating the age and composition of the volcanic activity at Harrat Ithnayn and how it changes through time. I apply geochronological, geochemical, and petrological methods to understand the origin and tectonic controls on volcanism in this region. I report new age determinations on 10 lava flows, one sample from the northern part of Harrat Khaybar and 9 samples from Harrat Ithnayn, by the 40Ar-39Ar laser step heating method. All ages are younger than 2 Ma and most of these lavas range in age between ~500 and 120 Ka. These ages constrain the timing and chemical variations of volcanic activity at Harrat Ithnayn. Unlike older Harrats Rahat and Khaybar, the volcanism at Harrat Ithnayn has also undergone less magmatic evolution, suggesting a lack of shallow crustal magma bodies. Similar to Harrat Hutaymah and other younger volcanic fields peripheral to the MMN line, olivine ± clinopyroxene dominated crystal fractionation at a range of upper mantle and crustal pressures, with some evidence of crustal assimilation. The new age constraints agree with the hypothesis of south-to- north volcanic progression of volcanism along the MMN line. In addition, active mantle upwelling, decompression melting and possible asthenospheric flow from the Afar mantle plume, appears to have been the source of this volcanic activity, produced from ~ 2-14% partial melting of a shallow garnet peridotite mantle source for magmas. ©Copyright by Suhail Alhejji June 3, 2019 All Rights Reserved Timing and Composition of Volcanism at Harrat Ithnayn, Western Saudi Arabia by Suhail Alhejji A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Presented June 3, 2019 Commencement June 2019 Master of Science thesis of Suhail Alhejji presented on June 3, 2019 APPROVED: Major Professor, representing the Geology Dean of College of Earth, Ocean, and Atmospheric Sciences Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Suhail Alhejji, Author ACKNOWLEDGEMENTS I would first like to express my sincere thanks to my major professor advisor Dr. Adam Kent for his great support and help throughout my master’s degree journey. I would also like to thank my committee members, Dr. Robert Duncan, Dr. David Graham, and Dr. Clare Reimers for their encouragement and guidance. My sincere thanks also go to Dr. Abdullah Al-Amri for his helpful academic advising and funding a part of the fieldwork expanse. I also greatly thank the Saudi Arabian Cultural Mission (SACM) for the fully funding of my graduate school expanses. I am grateful to the National Science Foundation (NSF) and King Abdulaziz City for Science and Technology (KACST) for supporting this research. Also, I would like to thank King Saud University (KSU) and the Saudi Society for Geosciences (SSG) for funding a major part of the fieldwork expense. I thank Dr. Victor Camp for kindly providing the geochemical data of lavas from Harrat Ithnayn, Dr. Dan Miggins provided valuable assistance with 40Ar-39Ar age analysis, Dr. Saeed Al-Shaltoni for his field assistance, Mr. Mufleh Aldossari for his valuable academic advising and his assistance in shipping the rock samples from Saudi Arabia to OSU. Last but not least, my special thanks to my parents, my wife, and my friends for being there when I need them and their support throughout this experience. TABLE OF CONTENTS Page 1 Introduction...…………………………………………………………………………… 1 1.1 Regional Background …………………………………………………. 6 1.2 Makkah-Madinah-Nufud (MMN) line Volcanism……………………… 7 2 Research Problems and Specific aims……………………………………………………. 12 3 Materials and Methods …………………………………………………………………… 13 3.1 Sampling Collection and Categorization…...…………………………… 13 3.2 Whole-rock XRF and ICP-MS Geochemistry……………………...…… 14 3.3 40Ar/39Ar Geochronology ………………………………......................... 16 3.4 Conditions and Compositions Modelling……………………………… 17 4 Results …………………………………………………………………………………… 19 4.1 Geochemistry …………………………………………………………. 19 4.2 Geochronology ……...…………………………………………………. 27 5 Discussion……………………………………………………………………….…….…. 30 5.1 Timing of magmatism at Harrat Ithnayn………………………………... 30 5.2 Causes of chemical variationsin Harrat Ithnayn lavas…………………. 33 5.2.1 Crystal fractionation …………………………………………. 33 5.2.2 Variations in mantle sources and degree of melting…………. 36 5.2.3 Crustal assimilation…………………………………………... 39 5.3 Regional Implications…………………………………………………… 41 6 Conclusions………………………………………………………………………………. 43 TABLE OF CONTENTS (Continued) Page 7 Bibliography ……………………………………………………………………………. 44 8 Appendices ……………………………………………………………………………… 50 LIST OF FIGURES Figure Page 1. Geologic map of western Arabia ………………………………………………… 1 2. Geologic map of the Arabian plate………………………………………………. 6 3. Geologic map of Harrat Rahat ………………………..…………………………. 9 4. Total Alkali vs. silica diagram for Harrat Rahat………………………………… 10 5. Map of samples collected at Harrat Ithnayn ……………………………………. 15 6. Total Alkali vs. silica diagram for Harrat Ithnayn ………………………………. 23 7. Bivariate diagram of MgO vs. K2O wt. % ……………………………………….24 8. Bivariate diagram of MgO vs. SiO wt. % ………………………………………. 24 9. Bivariate diagram of MgO vs. CaO wt. % ……………………………………… 25 10. Bivariate diagram of MgO wt. % vs. Ni ppm ………………………………….. 25 11. REE profiles for lava flows from Harrat Ithnayn ……………………………… 26 12. Evidence of excess 40Ar is shown in the 40Ar-39Ar age spectrum of a sample. 29 13. Evidence of Ar loss is shown in the 40Ar-39Ar age spectrum of a sample.......... 29 14. Age vs. latitude bar chart ………………………………………………………. 33 15. Bivariate diagram of MgO vs. CaO/Al2O3 wt. %................................................ 35 16. The result of the REEBOX MATLAB calculation …………………………… 39 17. A scatter diagram of K/Nb ratio vs. MgO concentrations……………………. 41 18. A scatter diagram of age vs. latitude, including helium isotopes ratio values … 42 LIST OF TABLES Table Page 1. The estimated area and volume of volcanism in MMN volcanic fields … 8 2. Parental magma for Harrat Ithnayn lavas ………………………………. 18 3. Geochemical data for Ithnayn lava flows ………………………………. 20 4. Summary table for new 40Ar-39Ar age determination for Ithnayn lavas… 28 LIST OF APPENDICES Appendix Page A. Petrographic data ……………………………………………………………… 50 B. Geochemical data………………………………………………………………. 54 1) Previous geochemical data of Camp et al. (1991) ……………… 54 2) REEBOX model and sensitivity analysis ………………………. 56 3) Important bivariate diagrams …………………………………… 57 C. Geochronological data…………………………………………………………… 59 1) Previous stratigraphic classification and K/Ar age results ………. 59 2) New 40Ar–39Ar age spectra and isochron plots for Ithnayn lavas … 60 LIST OF APPENDIX FIGURES Figure Page 1. Thin section photo of sample HI-5.………………………………………………….50 2. Thin section photo of sample HI-17.………………………………………………. 51 3. Thin section photo of sample HI-12.………………………………………………...52 4. Thin section photo of sample HI-2.………………………………………………….53 5. The input pop-up in the MATLAB script of the REEBOX model ………………....56 6. Sensitivity model used in the REEBOX model …………………………………… 56 7. P2O5 (wt.%) vs. Zr (ppm) bivariate diagram ……………………………………… 57 8. Assimilation fractional crystallization (AFC) calculated for K ppm ……………… 58 9. Previous stratigraphic classification and K/Ar age results ………………………… 59 10.40Ar–39Ar age spectra and isochron plots for HI-14 ………………………………. 60 11.40Ar–39Ar age spectra and isochron plots for HI-4 ………………………………. 61 12.40Ar–39Ar age spectra and isochron plots for HI-15 ………………………………. 62 13.40Ar–39Ar age spectra and isochron plots for HI-3A ……………………………….63 14.40Ar–39Ar age spectra and isochron plots for HI-19 ………………………………. 64 15.40Ar–39Ar age spectra and isochron plots for HI-12 ………………………………. 65 16.40Ar–39Ar age spectra and isochron plots for HI-11 ………………………………. 66 17.40Ar–39Ar age spectra and isochron plots for HI-13 ………………………………. 67 18.40Ar–39Ar age spectra and isochron plots for HI-7 ………………………………. 68 19.40Ar–39Ar age spectra and isochron plots for HI-20 ………………………………. 69 LIST OF APPENDIX TABLES Table Page 1. Previous geochemical data of Camp et al. (1991) ………………………………… 54 1 1- Introduction: Volcanic lava fields, locally known as Harrats, cover a large area (about 180,000 km2) in the western part of the Arabian
Recommended publications
  • Maps of Caves Surveyed by Saudi Geological Survey, Kingdom of Saudi Arabia
    MAPS OF CAVES SURVEYED BY SAUDI GEOLOGICAL SURVEY, KINGDOM OF SAUDI ARABIA COMPILED BY SAUDI CAVE UNIT Abstract This collection consists of nineteen maps and sketches of caves in Saudi Arabia explored by the Saudi Geological Survey Cave Unit between 2000 and 2004. Twelve are limestone caves located in the Umm er Radhuma or Aruma formations or in the overlying, unnamed Tsm formation. Seven are lava caves, located in Harrats Khaybar, Ithnayn, Kishb and Nawasif-Buqum. Each map or sketch is accompanied by a brief description of the cave itself, its geological setting and its location. A discussion is included of techniques and problems related to surveying caves in the Saudi Arabian environment as well as a brief history of cave exploration and mapping in Saudi Arabia. ϑϮϬϜϟ΍ ς΋΍ήΧ ΔϳΩϮόδϟ΍ ΔϴΟϮϟϮϴΠϟ΍ ΔΣΎδϤϟ΍ ΔΌϴϫ Δτγ΍ϮΑ ΎϬΤδϣ ϢΗ ϲΘϟ΍ ΔϳΩϮόδϟ΍ ΔϴΑήόϟ΍ ΔϜϠϤϤϟ΍ ϲϓ ϊϴϤΠΗ ΔϳΩϮόδϟ΍ ϑϮϬϜϟ΍ ΓΪΣϭ ΔλϼΨϟ΍ ΔΌѧѧϴϬΑ ϑϮѧѧϬϜϟ΍ ΓΪѧѧΣϭ ΎϬΘϔθѧѧϜΘγ΍ ϲѧѧΘϟ΍ ϑϮѧѧϬϜϠϟ ϲѧѧτϴτΨΗ Ϣѧѧγέϭ ΔτϳήѧѧΧ Γήθѧѧϋ ϊδѧѧΗ Ϧѧѧϣ ΔϋϮѧѧϤΠϤϟ΍ ϩάѧѧϫ ϒϟ΄ΘѧѧΗ ˱ΎϔϬϛ ήθϋ ΎϨΛ΍ ϊϘΗϭ . ϡ 2004 ϭ 2000 ϲϣΎϋ ϦϴΑ ΔϳΩϮόδѧϟ΍ ΔϴΑήѧόϟ΍ ΔѧϜϠϤϤϟ΍ ϲѧϓ ΔϳΩϮόδѧϟ΍ ΔϴѧΟϮϟϮϴΠϟ΍ ΔΣΎδѧϤϟ΍ ϊΑΎΘϟ΍ϭ ΎϫϮϠόϳ ϱάϟ΍ ϥϮϜΘϤϟ΍ ϞΧ΍Ω ϭ΃ Δϣήϋ ϥϮϜΘѧϣ ϭ΃ ΔϣϮѧοήϟ΍ ϡ΃ ϥϮϜΘѧϣ ϲѧϓ ϱήѧϴΟ ήѧΠΣ ϑϮѧϬϛ ϲѧϫϭ ΎϬϨѧϣ ΓήΣϭ ήΒϴΧ ΓήΣ ϲϓ ϊϘΗ ˬ ΔϴΑϻ ϑϮϬϛ ϲϫ ϑϮѧϬϜϟ΍ ϩάѧϫ Ϧѧϣ ΔόΒѧγϭ . ΪѧόΑ ϪΘϴϤδѧΗ ϢΘѧΗ Ϣѧϟ ϱάѧϟ΍ϭ ϲѧΛϼΜϟ΍ ήμѧόϠϟ ϒϬϜϠϟ ήμΘΨϣ ϒλϮΑ ΏϮΤμϣ ϒѧϬϜϠϟ ϲѧτϴτΨΗ Ϣѧγέ ϭ΃ ΔτϳήѧΧ Ϟѧϛϭ .ϡϮϘΒѧϟ΍ ϒѧλ΍Ϯϧϭ ΐθѧϛ ΓήѧΣϭ ϦϴѧϨΛ΍ ΔΌѧѧϴΑ ϲѧѧϓ ϑϮѧѧϬϜϟ΍ ΢δѧѧϤΑ ΔϘϠόΘѧѧϤϟ΍ ΕϼϜθѧѧϤϟ΍ϭ ΕΎϴѧѧϨϘΘϟ΍ Δѧѧγ΍έΪϟ΍ ϞϤθѧѧΗϭ.ϪόϗϮѧѧϣϭ ϲѧѧΟϮϟϮϴΠϟ΍ ϪόѧѧοϮϟ ΢ϴѧѧοϮΗϭ ΔϴΑήѧѧόϟ΍ ΔѧѧϜϠϤϤϟ΍ ϲѧѧϓ ϑϮѧѧϬϜϟ΍ ςϳήѧѧΨΗϭ ϑΎθѧѧϜΘγ΍ ΦϳέΎΘѧѧϟ κѧѧΨϠϣ ϰѧѧϟ· ΔϓΎѧѧοϹΎΑ ˬ ΔϳΩϮόδѧѧϟ΍ ΔϴΑήѧѧόϟ΍ ΔѧѧϜϠϤϤϟ΍ .
    [Show full text]
  • The Harrat Al-Birk Basalts in Southwest Saudi Arabia: Characteristic Alkali Mafic Magmatism Related to Red Sea Rifting
    Acta Geochim (2017) 36(1):74–88 DOI 10.1007/s11631-016-0126-2 ORIGINAL ARTICLE The Harrat Al-Birk basalts in southwest Saudi Arabia: characteristic alkali mafic magmatism related to Red Sea rifting Rami A. Bakhsh1 Received: 17 June 2016 / Revised: 31 July 2016 / Accepted: 19 September 2016 / Published online: 24 September 2016 Ó Science Press, Institute of Geochemistry, CAS and Springer-Verlag Berlin Heidelberg 2016 Abstract Harrat Al-Birk volcanics are products of the Red separation of clinopyroxene followed by amphiboles and Sea rift in southwest Saudi Arabia that started in the Ter- Fe–Ti oxides, particularly ilmenite. Accordingly, the Har- tiary and reached its climax at *5 Ma. This volcanic field rat Al-Birk alkali basalts underwent crystal fractionation is almost monotonous and is dominated by basalts that that is completely absent in the exotic mantle xenoliths include mafic–ultramafic mantle xenoliths (gabbro, web- (e.g. Nemeth et al. in The Pleistocene Jabal Akwa Al sterite, and garnet-clinopyroxenite). The present work Yamaniah maar/tuff ring-scoria cone complex as an anal- presents the first detailed petrographic and geochemical ogy for future phreatomagmatic to magmatic explosive notes about the basalts. They comprise vesicular basalt, eruption scenarios in the Jizan Region, SW Saudi Arabia porphyritic basalt, and flow-textured basalt, in addition to 2014). red and black scoria. Geochemically, the volcanic rock varieties of the Harrat Al-Birk are low- to medium-Ti, Keywords Harrat Al-Birk Á Alkaline basalt Á Red Sea sodic-alkaline olivine basalts with an enriched oceanic rifting Á Hydrous mantle Á Reworked oceanic crust island signature but extruded in a within-plate environ- ment.
    [Show full text]
  • SIM 3428 Pamphlet
    Geologic Map of the Northern Harrat Rahat Volcanic Field, Kingdom of Saudi Arabia By Drew T. Downs, Joel E. Robinson, Mark E. Stelten, Duane E. Champion, Hannah R. Dietterich, Thomas W. Sisson, Hani Zahran, Khalid Hassan, and Jamal Shawali Pamphlet to accompany U.S. Geological Survey Scientific Investigations Map 3428 Saudi Geological Survey Special Report SGS–SP–2019–2 2019 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Downs, D.T., Robinson, J.E., Stelten, M.E., Champion, D.E., Dietterich, H.R., Sisson, T.W., Zahran, H., Hassan, K., and Shawali, J., 2019, Geologic map of the northern Harrat Rahat volcanic field, Kingdom of Saudi Arabia: U.S. Geological Survey Scientific Investigations Map 3428 [also released as Saudi Geological Survey Special Report SGS–SP–2019–2], 65 p., 4 sheets, scales 1:75,000, 1:25,000, https://doi.org/10.3133/sim3428.
    [Show full text]
  • Saudi Voyager Magazine, Al Wahba Crater, Randa
    TITLE: Sleeping Beauty STANDFIRST: Saudi Arabia’s Al Wahba0 Crater is at the centre of one of the geographic wonders of Saudi Arabia, attracting visitors and academics from around the world. An experience not to be missed, Randa Saab Smith tells Saudi Voyager what to expect. BODY TEXT: The spectacular formations and unique terrain of the volcanic areas of Saudi Arabia have been intriguing Saudi and expatriate adventurers, scientists and explorers for decades. Even so, the volcanoes themselves have only recently begun to pique the interest of volcanologists, having largely gone unnoticed until the past decade, but now drawing interest from around the world. A number of harrats, or volcanic lava fields, cross the Kingdom. The distribution is thought to be associated with early seismic activity over the last 25 million years, and that resulted in a number of fissures splitting the Arabian Peninsula from the African continent and leading to the formation of the Red Sea. The harrats cover a broad area that links Yemen in the south to Syria in the north over a broad sweep of 180,000 square kilometres. The last well-documented eruption in Saudi Arabia occurred in the northern end of Harrat Rahat near Al Madinah in 1256AD and was preceded by significant earthquake activity for several days. Then, fountains of basalt lava spewed from the southeast of Al Madinah, with lava flow slowly advancing toward the city. The eruption would continue for 52 days, when the molten rock started to cool at just 12km away. About half a cubic kilometer of alkali olivine basalt was extruded from a 2.25 km-long fissure during this eruption, and the lava covered a distance of 23 km.
    [Show full text]
  • Aali, 87–8 , 163–7 , 177 Abu Khamis, 68 , 71–3 Ad-Durayb Yala, 205
    Cambridge University Press 978-0-521-86231-8 - Cambridge World Archaeology: The Archaeology of Prehistoric Arabia: Adaptation and Social Formation from the Neolithic to the Iron Age Peter Magee Index More information INDEX Aali, 87–8 , 163–7 , 177 Belghalem, 234 Abu Khamis, 68 , 71–3 Bell, Gertrude, 4 ad-Durayb Yala, 205 , 245–9 Beth Shemesh, 244 ahlamu, 180–1 Bida al-Mutawa, 57 Ain-Ghazal, 49 Bida Bint Saud, 216 , 219–20 , 236–7 Ain-Qannas, 68 , 73 Bidya, 100 Akab, 72 , 79–81 Bisyah, 98 , 100 Amlah, 100 Bithna, 238 Ancient South Arabian (language), 244–5 Burqu, 27, 50 Aquifers Saudi Arabia, 32–3 Carchemish, 208 , 210 , 257 , 264 , 266 UAE and Oman, 25–6 Childe, V. G., 46 Asimah, 100 , 238 Climate (ancient), 42–5 Asir, 29 , 36 , 41 , 56 , 150 Climate (today) Ass domestication and appearance in Arabia. Dhofar, 27 See donkey Saudi Arabia, 29–31 Assabiya (social cohesion), 11–12 , 62 , UAE and Oman, 25 251 , 275–6 Yemen, 28–9 Assurbanipal, 271 battles in northern Arabia, 271–2 Dadna, 189 Assur-bel-kala, 207 Dalma, 57–8 , 71–2 Assyrian empire Dar Kulaib, 163 and the Arabian Gulf, 271–2 date palm and northern Arabia, 268–72 early domestication, 58 Azraq 31, 50 Dhahran, 89 , 173 , 178 , 254 Dhahret al-Hasa, 216 , 219–20 Babylon, 1 , 3 , 178–9 , 195 , 270 , 272–4 , 281 Dhamar Bahrain Bronze Age, 128 Bronze Age. See Dilmun early agriculture, 126–8 Barbar, 163 Dhofar, 26–7 , 38 , 42 , 55 , 78 , 97 , 137 Barbar temple, 158–61 , 164 , 177 Dilmun Barqa el-Hetiye, 262 Bronze Age burials, 163–5 Bat, 98 , 100–1 , 225 , 282 Bronze Age seals, 166–70 Batinah
    [Show full text]
  • 00 Preliminares Antiguo Oriente
    01 Amzallag Implications_Antiguo Oriente 09/06/2015 10:21 a.m. Página 11 SOME IMPLICATIONS OF THE VOLCANIC THEOPHANY OF YHWH ON HIS PRIMEVAL IDENTITY NISSIM AMZALLAG nissamz@post.bgu.ac.il Ben-Gurion University in the Negev Beersheba, Israel Summary: Some Implications of the Volcanic Theophany of YHWH on His Primeval Identity YHWH’s theophany and mode of action are frequently evoked in the Bible as a vol- canic event. It is shown here that this representation, of central importance in the story of the Sinai Covenant, is probably not anchored in any specific volcanic erup- tion experienced by the Israelites in the past. In Antiquity, volcanic activity was spe- cifically associated with the gods who patronized metallurgy, given the homology between lava flowing from a volcano and slag released from a furnace at smelting. Evidence towards such a link is also identified in the Bible. Accordingly, rather than being simply a literary artifice imaging the outstanding powers of YHWH, volcanism may reflect the existence of metallurgical roots in Israelite theology. This contention is supported by Biblical evidences associating YHWH with metal production: (i) his primeval dominion in mining areas, (ii) his special worship by metalworkers, (iii) the representation of his celestial universe as a giant furnace. It is concluded that the vol- canic representation of YHWH’s theophany and mode of action reveal a surprising level of preservation of the metallurgic religious traditions in the ancient Israelite theology. Keywords: Volcanism – Metallurgy – Smelting God – Origins of Yahwism – Sinai Covenant Resumen: Algunas implicancias de la teofanía metalúrgica de Yahvé en su iden- tidad primitiva La teofanía y el modo de acción de Yahvé son frecuentemente evocadas en la Biblia como un evento volcánico.
    [Show full text]
  • Conference Program
    CONFERENCE PROGRAM 03-05 March 2020 13th International Geological Conference WWW.SSG-SA.ORG 1 2 Organizers 3 4 Sponsors 5 6 TABLE OF CONTENTS About SSG 2020 ...................................................................................................................................... 13 Organizing Committee ............................................................................................................................ 15 SSG 2020 Scientific Committee............................................................................................................... 17 KEYNOTES ............................................................................................................................................... 25 WORKSHOPS ........................................................................................................................................... 33 Track1. Mining: Mineralogy, Geology, Engineering, and Investment Incentives ................................... 39 Track 2: Stratigraphy, Sedimentology, Basin analysis and Petroleum systems ..................................... 47 Track 3: Hydrology, Environmental and Engineering Geology ............................................................... 57 Track 4: Structural Geology, Tectonics, and Geodynamics .................................................................... 67 Track 5: Geodesy, Geoinformatics, GIS, and Remote Sensing ............................................................... 71 Track 6: Geophysical Exploration: Seismic, Potential Field
    [Show full text]
  • Reptiles and Amphibians of Al Madinah Al Munawwarah Province, Saudi Arabia
    Russian Journal of Herpetology Vol. 28, No. 3, 2021, pp. 123 – 137 DOI: 10.30906/1026-2296-2021-28-3-123-137 REPTILES AND AMPHIBIANS OF AL MADINAH AL MUNAWWARAH PROVINCE, SAUDI ARABIA Abdulhadi A. Aloufi,1 Zuhair S. Amr,2 and Mohammad A. Abu Baker3 Submitted May 11, 2019 A total of 44 species of amphibians and reptiles are reported from Al Madinah Al Munawwarah Province, Saudi Arabia. They include two species of amphibian in two families (Bufonidae and Dicroglossidae) and 42 reptiles be- longing to 16 families (Agamidae, Boidae, Chamaeleonidae, Colubridae, Elapidae, Gekkonidae, Lacertidae, Lamprophiidae, Leptotyphlopidae, Phyllodactylidae, Psammophiidae, Scincidae, Sphaerodactylidae, Varanidae, Typhlopidae, and Viperidae). Platyceps sinai, Psammophis sibilans, Rhynchocalamus melanocephalus, are re- corded for the first time to the herpetofauna of Saudi Arabia. Range expansion for Euphlyctis ehrenbergii and Acanthocercus adramitanus to northern Saudi Arabia is reported. Our records expand the known distribution range of the Arabian Cobra, Naja arabica, further northwest. Keywords: Reptiles; amphibians; Al Madinah Province; new records; Saudi Arabia. INTRODUCTION to et al., 1985; Arnold, 1986; Al-Sadoon, 1988, 1989; Gasperetti, 1988; Al-Sadoon et al., 1991; Schätti and The area of the Al Madinah Province is located in the Gasperetti, 1994). Farag and Banaja (1980) studied the central part to the north-west of the Kingdom of Saudi herpetofauna of western Saudi Arabia, with records from Arabia (Fig. 1), with an area of about 153,800 km2. Dif- Al Madinah area. Recent studies provided more distribu- ferent types of habitats are found within Al Madinah; tional data on the amphibians (Al-Johany et al., 2014; from high mountains such as Jabal Werqaan (2393 m Al-Qahtani and Al-Johany, 2018) and reptiles (Hussein a.s.l.) and Jabal Radhwa (2282 m a.s.l.).
    [Show full text]
  • Introduction to Mining,SME Mining Engineering Handbook
    Hartman, Introductory Mining Engineering, Thomas, An Introduction to Mining,SME Mining Engineering Handbook Introduction Basic Definitions Mining History Mining’s Contribution to Civilization Common Minerals and Their Uses Mineral Resources in Saudi Arabia Stages of Mine Cycle Basic Definitions Mine: an excavation made in the earth to extract minerals. Mining: the activity, occupation, and industry concerned with the extraction of minerals. Mining Engineering: the art and science applied to the process of mining and the operation of mines. Mineral: a naturally occurring substance, usually inorganic, having a definite chemical composition and distinctive physical characteristics. Rock: an assemblage of minerals Ore: A natural aggregation of one or more solid minerals that can be mined, processed and sold at a profit. Waste or gangue: mineral that lacks utility and value when mined (gangue is more intimately associated with ore than is waste) Mineral deposit: geologic occurrence of minerals in relatively concentrated form. Ore deposit: economic occurrence of minerals that can be extracted at a profit. Metallic ores: include ores of the ferrous metals (iron, manganese, molybdenum, and tungsten); base metals (copper, lead, zinc, and tin); precious metals (gold, silver, and platinum); and radioactive metals (uranium, thorium, and radium). Nonmetallic ores: consist of industrial minerals such as phosphate, potash, stone, sand, gravel, sulfur, salt, and industrial diamonds. Mineral fuels: include coal, uranium, and several less common, marginal sources (lignite, oil shale, tar sand, and coal bed methane). Surface Mine: An excavation that is entirely open or operated from the surface. Underground Mine: An excavation that consists of openings for human and machine entry driven below the surface.
    [Show full text]
  • On Cenozoic Volcanic Lava of Al Waabah Crater (Maklaa Tameya), Kishb Area, Saudi Arabia: Geochemical Assessment and Tectonic Implication
    International Journal of Science, Technology & Management www.ijstm.com Volume No.04, Issue No. 02, February 2015 ISSN (online): 2394-1537 ON CENOZOIC VOLCANIC LAVA OF AL WAABAH CRATER (MAKLAA TAMEYA), KISHB AREA, SAUDI ARABIA: GEOCHEMICAL ASSESSMENT AND TECTONIC IMPLICATION Antar Abdel Wahab1, Mohamed Fouad Ghoneim2, Finlay M. Stuart3, Aziz Kafafy4 1,4 Earth Science Research Unit, P.O. Box 888, Taif University, Taif 21974, KSA 1,4 Department of Geology, Faculty of Science, Kafrelsheikh University, Egypt 2Geology Department, Faculty of Science, Tanta University, Egypt 3Isotope Geosciences Unit, Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 0QF, UK ABSTRACT The objective is to clarify the geochemical characteristics of Al Waabah crater; compare the volcanic assemblage with other nearby lavas, and to get better understanding of magma types and tectonic evolution. Rock sequence includes: basaltic scoria; olivine basalt and alkali olivine basalt together with subordinate andesine and scare dacite. Geochemical study using major elements, trace elements and REE's are carried out for 30 samples. Geochemical variation diagrams exhibit generally, linear to gently curved trends of chemical data. However, plots of Al2O3, K2O, Na2O and P2O5 show erratic variations.TiO2 plots form two cluster areas. Alteration effect prove that there is precludes variation in the nature of the lava and /or changes in the source plum. Andesitic rocks have generally high Ba content indicating accumulative K-feldspar. Using HFS elements on the spider diagram, shows general enrichments of Pb, Nb, Ta and depletion of Cr, Li and Y. The acidic varieties are mostly enriched in LILE (Cs, Ba&Rb).
    [Show full text]
  • Preliminary Survey for Lava-Tube Caves on Harrat Kishb, Kingdom of Saudi Arabia
    PRELIMINARY SURVEY FOR LAVA-TUBE CAVES ON HARRAT KISHB, KINGDOM OF SAUDI ARABIA BY M.J. ROOBOL, J.J. PINT, M.A. AL-SHANTI, A.J. AL-JUAID, S.A. AL-AMOUDI, AND S. PINT With the collaboration of A.M. AL-EISA, F. ALLAM, G.S. AL-SULAIMANI, AND A.S. BANAKHAR OPEN-FILE REPORT SGS-OF-2002-3 1423 H 2002 G A Open-File Report prepared by the Saudi Geological Survey, Jeddah, Kingdom of Saudi Arabia The work on which this report is based was performed in support of Saudi Geological Survey Subproject 4.1.1.2.1 — Reconnaissance of underground cavities (caves) in Ar Riyad and Arar. It has been edited and reviewed by staff of the Saudi Geological Survey. Product names used in this report are for descriptive purposes and in no way imply endorsement by SGS. This report is a product of the Saudi Geological Survey; if the information herein is used in any form, either quoted or paraphrased, this report should be properly cited using the full serial number, the author's name(s), and the year of publication. The correct citation for this report is: Roobol, M.J., Pint, J.J., Al-Shanti, M.A., Al-Juaid, A.J., Al-Amoudi, S.A, and Pint, S., With the collaboration of Al-Eisa, A.M., Allam, F., Al-Sulaimani, G.S., and Banakhar, A.S., 2002, Preliminary survey for lava-tube caves on Harrat Kishb, Kingdom of Saudi Arabia: Saudi Geological Survey Open-File Report SGS-OF-2002-3, 35 p., 41 figs., 1 table, 4 apps., 2 plates.
    [Show full text]
  • Remote Sensing and GIS Techniques for Reconstructing Arabian
    Remote sensing and GIS techniques for reconstructing Arabian palaeohydrology and identifying archaeological sites Paul Breeze, Nick Drake, Huw Groucutt, Ash Parton, Richard Jennings, Tom White, Laine Clark-Balzan, Ceri Shipton, Eleanor Scerri, Christopher Stimpson, et al. To cite this version: Paul Breeze, Nick Drake, Huw Groucutt, Ash Parton, Richard Jennings, et al.. Remote sensing and GIS techniques for reconstructing Arabian palaeohydrology and identifying archaeological sites. Quaternary International, Elsevier, 2015, Green Arabia: Human Prehistory at the Cross-roads of Continents, 382, pp.98-119. 10.1016/j.quaint.2015.01.022. hal-01829327 HAL Id: hal-01829327 https://hal.archives-ouvertes.fr/hal-01829327 Submitted on 4 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Quaternary International 382 (2015) 98e119 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint Remote sensing and GIS techniques for reconstructing Arabian palaeohydrology and identifying archaeological sites * Paul S. Breeze a, , Nick A. Drake a, Huw S. Groucutt b, Ash Parton b, Richard P. Jennings b, Tom S. White b, Laine Clark-Balzan b, Ceri Shipton c, Eleanor M.L. Scerri d, Christopher M.
    [Show full text]