The Astronomical Journal, 145:55 (16pp), 2013 March doi:10.1088/0004-6256/145/3/55 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. CHARACTERIZING THE MID-INFRARED EXTRAGALACTIC SKY WITH WISE AND SDSS Lin Yan1,E.Donoso1, Chao-Wei Tsai1, D. Stern2,R.J.Assef2,8, P. Eisenhardt2,A.W.Blain3, R. Cutri1, T. Jarrett1, S. A. Stanford4, E. Wright5, C. Bridge6, and D. A. Riechers6,7 1 Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125, USA;
[email protected] 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 3 Department of Physics & Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK 4 Department of Physics, University of California, Davis, CA 95616, USA 5 Astronomy Department, University of California, Los Angeles, CA 90095-1547, USA 6 Astronomy Department, California Institute of Technology, 1200 East California Blvd, Pasadena, CA91125, USA 7 Astronomy Department, Cornell University, Ithaca, NY 14853, USA Received 2012 September 7; accepted 2012 December 10; published 2013 January 18 ABSTRACT The Wide-field Infrared Survey Explorer (WISE) has completed its all-sky survey in four channels at 3.4–22 μm, detecting hundreds of millions of objects. We merge the WISE mid-infrared data with optical data from the Sloan Digital Sky Survey (SDSS) and provide a phenomenological characterization of WISE extragalactic sources. WISE is most sensitive at 3.4 μm(W1) and least sensitive at 22 μm(W4). The W1 band probes massive early-type galaxies out to z 1.