Complex Function Theory

Total Page:16

File Type:pdf, Size:1020Kb

Complex Function Theory Complex Function Theory Second Edition Donald Sarason AMERICAN MATHEMATICAL SOCIETY http://dx.doi.org/10.1090/mbk/049 Complex Function Theory Second Edition Donald Sarason AMERICAN MATHEMATICAL SOCIETY 2000 Mathematics Subject Classification. Primary 30–01. Front Cover: The figure on the front cover is courtesy of Andrew D. Hwang. The Hindustan Book Agency has the rights to distribute this book in India, Bangladesh, Bhutan, Nepal, Pakistan, Sri Lanka, and the Maldives. For additional information and updates on this book, visit www.ams.org/bookpages/mbk-49 Library of Congress Cataloging-in-Publication Data Sarason, Donald. Complex function theory / Donald Sarason. — 2nd ed. p. cm. Includes index. ISBN-13: 978-0-8218-4428-1 (alk. paper) ISBN-10: 0-8218-4428-8 (alk. paper) 1. Functions of complex variables. I. Title. QA331.7.S27 2007 515.9—dc22 2007060552 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. c 2007 by the American Mathematical Society. All rights reserved. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 121110090807 Contents Preface to the Second Edition ix Preface to the First Edition xi Chapter I. Complex Numbers 1 §I.1. Definition of C 2 §I.2. Field Axioms 2 §I.3. Embedding of R in C. The Imaginary Unit 3 §I.4. Geometric Representation 3 §I.5. Triangle Inequality 4 §I.6. Parallelogram Equality 5 §I.7. Plane Geometry via Complex Numbers 5 §I.8. C as a Metric Space 6 §I.9. Polar Form 6 §I.10. De Moivre’s Formula 7 §I.11. Roots 8 §I.12. Stereographic Projection 9 §I.13. Spherical Metric 10 §I.14. Extended Complex Plane 11 Chapter II. Complex Differentiation 13 §II.1. Definition of the Derivative 13 §II.2. Restatement in Terms of Linear Approximation 14 §II.3. Immediate Consequences 14 iii iv Contents §II.4. Polynomials and Rational Functions 15 §II.5. Comparison Between Differentiability in the Real and Complex Senses 15 §II.6. Cauchy-Riemann Equations 16 §II.7. Sufficient Condition for Differentiability 17 §II.8. Holomorphic Functions 17 §II.9. Complex Partial Differential Operators 18 §II.10. Picturing a Holomorphic Function 19 §II.11. Curves in C 20 §II.12. Conformality 21 §II.13. Conformal Implies Holomorphic 22 §II.14. Harmonic Functions 23 §II.15. Holomorphic Implies Harmonic 24 §II.16. Harmonic Conjugates 24 Chapter III. Linear-Fractional Transformations 27 §III.1. Complex projective space 27 §III.2. Linear-fractional transformations 28 §III.3. Conformality 29 §III.4. Fixed points 29 §III.5. Three-fold transitivity 29 §III.6. Factorization 30 §III.7. Clircles 31 §III.8. Preservation of clircles 31 §III.9. Analyzing a linear-fractional transformation—an example 32 Chapter IV. Elementary Functions 35 §IV.1. Definition of ez 35 §IV.2. Law of Exponents 36 §IV.3. ez is holomorphic 36 §IV.4. Periodicity 37 §IV.5. ez as a map 37 §IV.6. Hyperbolic functions 38 §IV.7. Zeros of coshz and sinhz.38 §IV.8. Trigonometric functions 39 §IV.9. Logarithms 40 §IV.10. Branches of arg z and log z.40 Contents v §IV.11. log z as a holomorphic function 41 §IV.12. Logarithms of holomorphic functions 42 §IV.13. Roots 43 §IV.14. Inverses of holomorphic functions 43 §IV.15. Inverse trigonometric functions 44 §IV.16. Powers 45 §IV.17. Analytic continuation and Riemann surfaces 45 Chapter V. Power Series 49 §V.1. Infinite Series 49 §V.2. Necessary Condition for Convergence 49 §V.3. Geometric Series 50 §V.4. Triangle Inequality for Series 50 §V.5. Absolute Convergence 50 §V.6. Sequences of Functions 51 §V.7. Series of Functions 51 §V.8. Power Series 52 §V.9. Region of Convergence 53 §V.10. Radius of Convergence 54 §V.11. Limits Superior 54 §V.12. Cauchy-Hadamard Theorem 55 §V.13. Ratio Test 56 §V.14. Examples 57 §V.15. Differentiation of Power Series 58 §V.16. Examples 60 §V.17. Cauchy Product 61 §V.18. Division of Power Series 63 Chapter VI. Complex Integration 65 §VI.1. Riemann Integral for Complex-Valued Functions 65 §VI.2. Fundamental Theorem of Calculus 66 §VI.3. Triangle Inequality for Integration 66 §VI.4. Arc Length 67 §VI.5. The Complex Integral 67 §VI.6. Integral of a Derivative 68 §VI.7. An Example 68 vi Contents §VI.8. Reparametrization 69 §VI.9. The Reverse of a Curve 70 §VI.10. Estimate of the Integral 71 §VI.11. Integral of a Limit 71 §VI.12. An Example 71 Chapter VII. Core Versions of Cauchy’s Theorem, and Consequences 75 §VII.1. Cauchy’s Theorem for a Triangle 75 §VII.2. Cauchy’s Theorem for a Convex Region 78 §VII.3. Existence of a Primitive 78 §VII.4. More Definite Integrals 79 §VII.5. Cauchy’s Formula for a Circle 79 §VII.6. Mean Value Property 81 §VII.7. Cauchy Integrals 82 §VII.8. Implications for Holomorphic Functions 83 §VII.9. Cauchy Product 84 §VII.10. Converse of Goursat’s Lemma 85 §VII.11. Liouville’s Theorem 86 §VII.12. Fundamental Theorem of Algebra 86 §VII.13. Zeros of Holomorphic Functions 87 §VII.14. The Identity Theorem 89 §VII.15. Weierstrass Convergence Theorem 89 §VII.16. Maximum Modulus Principle 90 §VII.17. Schwarz’s Lemma 91 §VII.18. Existence of Harmonic Conjugates 93 §VII.19. Infinite Differentiability of Harmonic Functions 94 §VII.20. Mean Value Property for Harmonic Functions 94 §VII.21. Identity Theorem for Harmonic Functions 94 §VII.22. Maximum Principle for Harmonic Functions 95 §VII.23. Harmonic Functions in Higher Dimensions 95 Chapter VIII. Laurent Series and Isolated Singularities 97 §VIII.1. Simple Examples 97 §VIII.2. Laurent Series 98 §VIII.3. Cauchy Integral Near ∞ 99 §VIII.4. Cauchy’s Theorem for Two Concentric Circles 100 Contents vii §VIII.5. Cauchy’s Formula for an Annulus 101 §VIII.6. Existence of Laurent Series Representations 101 §VIII.7. Isolated Singularities 102 §VIII.8. Criterion for a Removable Singularity 105 §VIII.9. Criterion for a Pole 105 §VIII.10. Casorati-Weierstrass Theorem 106 §VIII.11. Picard’s Theorem 106 §VIII.12. Residues 106 Chapter IX. Cauchy’s Theorem 109 §IX.1. Continuous Logarithms 109 §IX.2. Piecewise C1 Case 110 §IX.3. Increments in the Logarithm and Argument Along a Curve 110 §IX.4. Winding Number 111 §IX.5. Case of a Piecewise-C1 Curve 111 §IX.6. Contours 113 §IX.7. Winding Numbers of Contours 114 §IX.8. Separation Lemma 115 §IX.9. Addendum to the Separation Lemma 117 §IX.10. Cauchy’s Theorem 118 §IX.11. Homotopy 119 §IX.12. Continuous Logarithms—2-D Version 119 §IX.13. Homotopy and Winding Numbers 120 §IX.14. Homotopy Version of Cauchy’s Theorem 121 §IX.15. Runge’s Approximation Theorem 121 §IX.16. Second Proof of Cauchy’s Theorem 122 §IX.17. Sharpened Form of Runge’s Theorem 123 Chapter X. Further Development of Basic Complex Function 125 §X.1. Simply Connected Domains 125 §X.2. Winding Number Criterion 126 §X.3. Cauchy’s Theorem for Simply Connected Domains 126 §X.4. Existence of Primitives 127 §X.5. Existence of Logarithms 127 §X.6. Existence of Harmonic Conjugates 128 §X.7. Simple Connectivity and Homotopy 128 viii Contents §X.8. The Residue Theorem 129 §X.9. Cauchy’s Formula 130 §X.10. More Definite Integrals 130 §X.11. The Argument Principle 137 §X.12. Rouch´e’s Theorem 138 §X.13. The Local Mapping Theorem 140 §X.14. Consequences of the Local Mapping Theorem 140 §X.15. Inverses 141 §X.16. Conformal Equivalence 141 §X.17. The Riemann Mapping Theorem 142 §X.18. An Extremal Property of Riemann Maps 143 §X.19. Stieltjes-Osgood Theorem 144 §X.20. Proof of the Riemann Mapping Theorem 146 §X.21. Simple Connectivity Again 148 Appendix 1. Sufficient condition for differentiability 151 Appendix 2. Two instances of the chain rule 153 Appendix 3. Groups, and linear-fractional transformations 155 Appendix 4. Differentiation under the integral sign 157 References 159 Index 161 Preface to the Second Edition As is usual in a second edition, various minor flaws that had crept into the first edition have been corrected. Certain topics are now presented more clearly, it is hoped, after being rewritten and/or reorganized. The treatment has been expanded only slightly: there is now a section on division of power series, and a brief discussion of homotopy. (The latter topic was relegated to a couple of exercises in the first edition.) Four appendices have been added; they contain needed background which, experience has shown, is not possessed nowadays by all students taking introductory complex analysis. In this edition, the numbers of certain exercises are preceded by an asterisk. The asterisk indicates that the exercise will be referred to later in the text. In many cases the result established in the exercise will be needed as part of a proof.
Recommended publications
  • Arxiv:1207.1472V2 [Math.CV]
    SOME SIMPLIFICATIONS IN THE PRESENTATIONS OF COMPLEX POWER SERIES AND UNORDERED SUMS OSWALDO RIO BRANCO DE OLIVEIRA Abstract. This text provides very easy and short proofs of some basic prop- erties of complex power series (addition, subtraction, multiplication, division, rearrangement, composition, differentiation, uniqueness, Taylor’s series, Prin- ciple of Identity, Principle of Isolated Zeros, and Binomial Series). This is done by simplifying the usual presentation of unordered sums of a (countable) family of complex numbers. All the proofs avoid formal power series, double series, iterated series, partial series, asymptotic arguments, complex integra- tion theory, and uniform continuity. The use of function continuity as well as epsilons and deltas is kept to a mininum. Mathematics Subject Classification: 30B10, 40B05, 40C15, 40-01, 97I30, 97I80 Key words and phrases: Power Series, Multiple Sequences, Series, Summability, Complex Analysis, Functions of a Complex Variable. Contents 1. Introduction 1 2. Preliminaries 2 3. Absolutely Convergent Series and Commutativity 3 4. Unordered Countable Sums and Commutativity 5 5. Unordered Countable Sums and Associativity. 9 6. Sum of a Double Sequence and The Cauchy Product 10 7. Power Series - Algebraic Properties 11 8. Power Series - Analytic Properties 14 References 17 arXiv:1207.1472v2 [math.CV] 27 Jul 2012 1. Introduction The objective of this work is to provide a simplification of the theory of un- ordered sums of a family of complex numbers (in particular, for a countable family of complex numbers) as well as very easy proofs of basic operations and properties concerning complex power series, such as addition, scalar multiplication, multipli- cation, division, rearrangement, composition, differentiation (see Apostol [2] and Vyborny [21]), Taylor’s formula, principle of isolated zeros, uniqueness, principle of identity, and binomial series.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • Math 263A Notes: Algebraic Combinatorics and Symmetric Functions
    MATH 263A NOTES: ALGEBRAIC COMBINATORICS AND SYMMETRIC FUNCTIONS AARON LANDESMAN CONTENTS 1. Introduction 4 2. 10/26/16 5 2.1. Logistics 5 2.2. Overview 5 2.3. Down to Math 5 2.4. Partitions 6 2.5. Partial Orders 7 2.6. Monomial Symmetric Functions 7 2.7. Elementary symmetric functions 8 2.8. Course Outline 8 3. 9/28/16 9 3.1. Elementary symmetric functions eλ 9 3.2. Homogeneous symmetric functions, hλ 10 3.3. Power sums pλ 12 4. 9/30/16 14 5. 10/3/16 20 5.1. Expected Number of Fixed Points 20 5.2. Random Matrix Groups 22 5.3. Schur Functions 23 6. 10/5/16 24 6.1. Review 24 6.2. Schur Basis 24 6.3. Hall Inner product 27 7. 10/7/16 29 7.1. Basic properties of the Cauchy product 29 7.2. Discussion of the Cauchy product and related formulas 30 8. 10/10/16 32 8.1. Finishing up last class 32 8.2. Skew-Schur Functions 33 8.3. Jacobi-Trudi 36 9. 10/12/16 37 1 2 AARON LANDESMAN 9.1. Eigenvalues of unitary matrices 37 9.2. Application 39 9.3. Strong Szego limit theorem 40 10. 10/14/16 41 10.1. Background on Tableau 43 10.2. KOSKA Numbers 44 11. 10/17/16 45 11.1. Relations of skew-Schur functions to other fields 45 11.2. Characters of the symmetric group 46 12. 10/19/16 49 13. 10/21/16 55 13.1.
    [Show full text]
  • A Certain Integral-Recurrence Equation with Discrete-Continuous Auto-Convolution
    ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), 245–250 A CERTAIN INTEGRAL-RECURRENCE EQUATION WITH DISCRETE-CONTINUOUS AUTO-CONVOLUTION Mircea I. Cîrnu Abstract. Laplace transform and some of the author’s previous results about first order differential-recurrence equations with discrete auto-convolution are used to solve a new type of non-linear quadratic integral equation. This paper continues the author’s work from other articles in which are considered and solved new types of algebraic-differential or integral equations. 1. Introduction In the earlier paper [4], N. M. Flaisher solved by Fourier transform method a second order differential-recurrence equation. The present author used in [2] the Laplace transform to derive Newton’s formulas about the sums of powers of the roots of a polynomial. In this paper, the Laplace transform will be used to solve an integral-recurrence equation on semi-axis, with discrete-continuous auto-convolution of its unknowns. Namely, applying the Laplace transform on considered equation, we obtain for the transforms of unknowns a first order differential-recurrence equation with discrete auto-convolution of the type studied in [3] and [1]. Using for this equation the general theory given in [3], we find the transforms of unknowns in convenient assumptions, the solutions of the initial equation being obtained by inverse Laplace transform. 2. Convolution products Two convolution products have been imposed over the time. The first, in continuous-variable case, is the bilateral convolution of two integrable functions u(x) and v(x) on real axis, given by formula Z ∞ u(x) ? v(x) = u(t)v(x − t) dt , −∞ 2010 Mathematics Subject Classification: primary 45G10; secondary 44A10.
    [Show full text]
  • M 3001 Assignment 5: Solution
    M 3001 ASSIGNMENT 5: SOLUTION Due in class: Wednesday, Feb. 16, 2011 Name M.U.N. Number P∞ P∞ P∞ 1. Suppose n=1 an = ∞. Let n=1 bn be a regrouping of n=1 an formed by inserting paren- P∞ theses. Prove that n=1 bn = ∞. P∞ P∞ Solution. Since n=1 bn is a regrouping of n=1 an, there is an increasing function φ : N → N such that bn = aφ(n). Note that for any M > 0 there is an N ∈ N such that n > N implies Pn Pn Pφ(n) Pn P∞ k=1 ak > M. So k=1 bk = k=1 ak ≥ k=1 ak > M. That is to say, n=1 bn = ∞. P∞ P∞ P∞ 2. If n=1 an converges absolutely and n=1 bn is a rearrangement of n=1 an, prove that P∞ P∞ n=1 |bn| = n=1 |an|. P∞ P∞ P∞ Solution. Since n=1 |an| converges and n=1 |bn| is a rearrangement of n=1 |an|. By the P∞ P∞ theorem on series rearrangement proved in Section 2.3, n=1 |bn| equals n=1 |an|. 3. Give an example showing that a rearrangement of a divergent series may diverge or converge. Solution. Since a series is a rearrangement of itself, a divergent series is its own divergent P∞ rearrangement. Suppose n=1 an is conditionally convergent. Then there is an arrangement P∞ P∞ P∞ n=1 bn = ∞ of n=1 an. In fact, let p1, p2, ... be the nonnegative terms of n=1 an in the P∞ order in which they occur; let −q1, −q2, ..
    [Show full text]
  • Generating Functions
    MATH 324 Summer 2012 Elementary Number Theory Notes on Generating Functions Generating Functions In this note we will discuss the ordinary generating function of a sequence of real numbers, and then find the generating function for some sequences, including the sequence of Mersenne numbers and the sequence of Fibonacci numbers. Definition. Given a sequence ak k≥0 of real numbers, the ordinary generating function, or generating f g function, of the sequence ak k≥0 is defined to be f g 1 k 2 G(x) = akx = a0 + a1x + a2x + : ( ) k=0 · · · ∗ X The sum is finite if the sequence is finite, and infinite if the sequence is infinite. In the latter case, we will think of ( ) as either a power series with x chosen so that the sum converges, or as a formal power series, where we ∗are not concerned with convergence. Example 1. Suppose that n is a fixed positive integer and n ak = k for k = 0; 1; : : : ; n: From the binomial theorem we have n n n n n n (1 + x) = + x + x2 + + x ; 0 1 2 · · · n n and the generating function for the sequence ak k is f g =0 n G(x) = (1 + x) : Note: The advantage of what we have done is that we have expressed G(x) in a very simple encoded form. If we know this encoded form for G(x); it is now easy to derive ak by decoding or expanding G(x) as a k power series and finding the coefficient of x : Often we will be able to find G(x) without knowing ak; and then be able to solve for ak by expanding G(x): Example 2.
    [Show full text]
  • A Power Series Centered at Z0 ∈ C Is an Expansion of the Form ∞ X N An(Z − Z0) , N=0 Where An, Z ∈ C
    LECTURE-5 : POWER SERIES VED V. DATAR∗ A power series centered at z0 2 C is an expansion of the form 1 X n an(z − z0) ; n=0 where an; z 2 C. If an and z are restricted to be real numbers, this is the usual power series that you are already familiar with. A priori it is only a formal expression. But for certain values of z, lying in the so called disc of convergence, this series actually converges, and the power series represents a function of z. Before we discuss this fundamental theorem of power series, let us review some basic facts about complex series, and series of complex valued functions. Series of complex numbers and complex valued functions A series is an infinite sum of the form 1 X an; n=0 where an 2 C for all n. We say that the series converges to S, and write 1 X an = S; n=0 if the sequence of partial sums N X SN = an n=0 converges to S. We need the following basic fact. P1 P1 Proposition 0.1. If n=0 janj converges then n=0 an converges. P1 Proof. We will show that SN forms a Cauchy sequence if n=0 janj con- verges. Then the theorem will follow from the completeness of C. If we let PN TN = n=0 janj, then fTN g is a Cauchy sequence by the hypothesis. Then by triangle inequality M M X X jSN − SM j = an ≤ janj = jTM − TN j: n=N+1 n=N+1 Date: 24 August 2016.
    [Show full text]
  • Course 214 Section 2: Infinite Series Second Semester 2008
    Course 214 Section 2: Infinite Series Second Semester 2008 David R. Wilkins Copyright c David R. Wilkins 1989–2008 Contents 2 Infinite Series 25 2.1 The Comparison Test and Ratio Test . 26 2.2 Absolute Convergence . 28 2.3 The Cauchy Product of Infinite Series . 28 2.4 Uniform Convergence for Infinite Series . 30 2.5 Power Series . 31 2.6 The Exponential Function . 32 i 2 Infinite Series An infinite series is the formal sum of the form a1 + a2 + a3 + ···, where each +∞ P number an is real or complex. Such a formal sum is also denoted by an. n=1 +∞ P Sometimes it is appropriate to consider infinite series an of the form n=m am + am+1 + am+2 + ···, where m ∈ Z. Clearly results for such sequences may be deduced immediately from corresponding results in the case m = 1. +∞ P Definition An infinite series an is said to converge to some complex n=1 number s if and only if, given any ε > 0, there exists some natural number N m X such that an − s < ε for all natural numbers m satisfying m ≥ N. If n=1 +∞ +∞ P P the infinite series an converges to s then we write an = s. An infinite n=1 n=1 series is said to be divergent if it is not convergent. For each natural number m, the mth partial sum sm of the infinite se- +∞ +∞ P P ries an is given by sm = a1 + a2 + ··· + am. Note that an converges n=1 n=1 to some complex number s if and only if sm → s as m → +∞.
    [Show full text]
  • Chapter 10: Power Series
    Chapter 10 Power Series In discussing power series it is good to recall a nursery rhyme: \There was a little girl Who had a little curl Right in the middle of her forehead When she was good She was very, very good But when she was bad She was horrid." (Robert Strichartz [14]) Power series are one of the most useful type of series in analysis. For example, we can use them to define transcendental functions such as the exponential and trigonometric functions (as well as many other less familiar functions). 10.1. Introduction A power series (centered at 0) is a series of the form 1 X n 2 n anx = a0 + a1x + a2x + ··· + anx + :::: n=0 where the constants an are some coefficients. If all but finitely many of the an are zero, then the power series is a polynomial function, but if infinitely many of the an are nonzero, then we need to consider the convergence of the power series. The basic facts are these: Every power series has a radius of convergence 0 ≤ R ≤ 1, which depends on the coefficients an. The power series converges absolutely in jxj < R and diverges in jxj > R. Moreover, the convergence is uniform on every interval jxj < ρ where 0 ≤ ρ < R. If R > 0, then the sum of the power series is infinitely differentiable in jxj < R, and its derivatives are given by differentiating the original power series term-by-term. 181 182 10. Power Series Power series work just as well for complex numbers as real numbers, and are in fact best viewed from that perspective.
    [Show full text]
  • Homework 4 Solutions 26.5. Let ∑ N=1 an and ∑ N=1 Bn Be Absolutely
    Homework 4 Solutions Math 171, Spring 2010 Please send corrections to [email protected] P1 P1 P1 p 26.5. Let n=1 an and n=1 bn be absolutely convergent series. Prove that the series n=1 janbnj converges. P1 P1 P1 Solution. Since n=1 janj and n=1 jbnj converge, by Theorem 23.1, n=1 janj + jbnj converges. Note that for all n, we have p p p janbnj = janjjbnj ≤ (janj + jbnj)(janj + jbnj) = janj + jbnj: P1 So by Theorem 26.3 (Comparison Test), since n=1 janj + jbnj converges absolutely, we see that P1 p n=1 janbnj converges absolutely, and hence converges as all terms are positive. 27.1. Find the radius of convergence R of each of the power series. Discuss the convergence of the power series at the points jx − tj = R. Solution. P1 x2n−1 (a) n=1 (2n−1)! Note that x2(n+1)−1 x2 lim (2(n+1)−1)! = lim = 0 n!1 x2n−1 n!1 (2n + 1)(2n) (2n−1)! so by the ratio test, the series converges absolutely for all x, and so R = 1. P1 n(x−1)n (b) n=1 2n Note that (n+1)(x−1)(n+1) (n+1) n + 1 x − 1 x − 1 lim 2 = lim = n!1 n(x−1)n n!1 n 2 2 2n so by the ratio test, the series converges absolutely if jx − 1j < 2 and diverges if jx − 1j > 2. Thus P1 P1 n R = 2. If jx − 1j = 2 then the power series diverges, since n=1 n and n=1(−1) n diverge.
    [Show full text]
  • Arxiv:1311.6710V1 [Math.CA] 25 Nov 2013 Oetpc Eae Ora,Complex, Real, to Related Topics Some N Ore Analysis Fourier and Tpe Semmes Stephen Ieuniversity Rice Preface
    Some topics related to real, complex, and Fourier analysis Stephen Semmes Rice University arXiv:1311.6710v1 [math.CA] 25 Nov 2013 Preface Here we look at some situations that are like the unit circle or the real line in some ways, but which can be more complicated or fractal in other ways. ii Contents 1 The unit circle 1 1.1 Integrablefunctions ......................... 1 1.2 AbelsumsandCauchyproducts . 3 1.3 ThePoissonkernel .......................... 5 1.4 Continuousfunctions......................... 6 1.5 Lp Functions ............................. 8 1.6 Harmonicfunctions.......................... 10 1.7 ComplexBorelmeasures. 11 1.8 Holomorphicfunctions .. .. .. .. .. .. .. .. .. .. 15 1.9 Productsoffunctions. .. .. .. .. .. .. .. .. .. .. 16 1.10 Representationtheorems. 20 2 The real line 22 2.1 Fouriertransforms .......................... 22 2.2 Holomorphicextensions . .. .. .. .. .. .. .. .. .. 24 2.3 Someexamples ............................ 25 2.4 The multiplication formula . 27 2.5 Convergence.............................. 29 2.6 Harmonicextensions ......................... 31 2.7 Boundedharmonicfunctions . 33 2.8 Cauchy’stheorem........................... 35 2.9 Cauchy’sintegralformula . 37 2.10Somevariants............................. 39 3 Commutativetopologicalgroups 42 3.1 Basicnotions ............................. 42 3.2 Haarmeasure............................. 44 3.3 Directsumsandproducts . 47 3.4 Continuoushomomorphisms. 49 3.5 Sumsandproducts,continued. 52 3.6 Spacesofcontinuousfunctions . 54 3.7 Thedualgroup...........................
    [Show full text]
  • Infinite Series, Infinite Products, and Infinite Fractions
    Part 3 Infinite series, infinite products, and infinite fractions CHAPTER 5 Advanced theory of infinite series Even as the finite encloses an infinite series And in the unlimited limits appear, So the soul of immensity dwells in minutia And in the narrowest limits no limit in here. What joy to discern the minute in infinity! The vast to perceive in the small, what divinity! Jacob Bernoulli (1654-1705) Ars Conjectandi. This chapter is about going in-depth into the theory and application of infinite series. One infinite series that will come up again and again in this chapter and the next chapter as well, is the Riemann zeta function 1 1 ζ(z) = ; nz n=1 X introduced in Section 4.6. Amongst many other things, in this chapter we'll see how to write some well-known constants in terms of the Riemann zeta function; e.g. we'll derive the following neat formula for our friend log 2 ( 5.5): x 1 1 log 2 = ζ(n); 2n n=2 X another formula for our friend the Euler-Mascheroni constant ( 5.9): x 1 ( 1)n γ = − ζ(n); n n=2 X and two more formulas involving our most delicious friend π (see 's 5.10 and 5.11): x 1 3n 1 π2 1 1 1 1 1 π = − ζ(n + 1) ; = ζ(2) = = 1 + + + + : 4n 6 n2 22 32 42 · · · n=2 n=1 X X In this chapter, we'll also derive Gregory-Leibniz-Madhava's formula ( 5.10) x π 1 1 1 1 1 = 1 + + + ; 4 − 3 5 − 7 9 − 11 − · · · and Machin's formula which started the \decimal place race" of computing π ( 5.10): x 1 1 1 ( 1)n 4 1 π = 4 arctan arctan = 4 − : 5 − 239 (2n + 1) 52n+1 − 2392n+1 n=0 X 229 230 5.
    [Show full text]