ARRB2 Blocking Peptide (C-Term) Synthetic Peptide Catalog # Bp21771b

Total Page:16

File Type:pdf, Size:1020Kb

ARRB2 Blocking Peptide (C-Term) Synthetic Peptide Catalog # Bp21771b 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 ARRB2 Blocking Peptide (C-Term) Synthetic peptide Catalog # BP21771b Specification ARRB2 Blocking Peptide (C-Term) - ARRB2 Blocking Peptide (C-Term) - Product Background Information Functions in regulating agonist-mediated Primary Accession P32121 G-protein coupled receptor (GPCR) signaling by mediating both receptor desensitization and resensitization processes. During homologous ARRB2 Blocking Peptide (C-Term) - Additional Information desensitization, beta-arrestins bind to the GPRK-phosphorylated receptor and sterically preclude its coupling to the cognate G- protein; Gene ID 409 the binding appears to require additional receptor determinants exposed only in the Other Names active receptor conformation. The Beta-arrestin-2, Arrestin beta-2, ARRB2, beta-arrestins target many receptors for ARB2, ARR2 internalization by acting as endocytic adapters (CLASPs, clathrin-associated sorting proteins) Target/Specificity The synthetic peptide sequence is selected and recruiting the GPRCs to the adapter from aa 284-298 of HUMAN ARRB2 protein 2 complex 2 (AP-2) in clathrin-coated pits (CCPs). However, the extent of Format beta-arrestin involvement appears to vary Peptides are lyophilized in a solid powder significantly depending on the receptor, format. Peptides can be reconstituted in agonist and cell type. Internalized solution using the appropriate buffer as arrestin-receptor complexes traffic to needed. intracellular endosomes, where they remain uncoupled from G-proteins. Two different Storage modes of arrestin-mediated internalization Maintain refrigerated at 2-8°C for up to 6 occur. Class A receptors, like ADRB2, OPRM1, months. For long term storage store at ENDRA, D1AR and ADRA1B dissociate from -20°C. beta- arrestin at or near the plasma membrane and undergo rapid recycling. Class B receptors, Precautions like AVPR2, AGTR1, NTSR1, TRHR and TACR1 This product is for research use only. Not internalize as a complex with arrestin and for use in diagnostic or therapeutic traffic with it to endosomal vesicles, procedures. presumably as desensitized receptors, for extended periods of time. Receptor resensitization then requires that ARRB2 Blocking Peptide (C-Term) - Protein receptor-bound arrestin is removed so that the Information receptor can be dephosphorylated and returned to the plasma membrane. Mediates Name ARRB2 endocytosis of CCR7 following ligation of CCL19 but not CCL21. Involved in Synonyms ARB2, ARR2 internalization of P2RY1, P2RY4, P2RY6 and P2RY11 and ATP-stimulated internalization of Function P2RY2. Involved in phosphorylation-dependent Functions in regulating agonist-mediated internalization of OPRD1 and subsequent G-protein coupled receptor (GPCR) signaling recycling or degradation. Involved in by mediating both receptor desensitization ubiquitination of IGF1R. Beta-arrestins function and resensitization processes. During as multivalent adapter proteins that can switch Page 1/4 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 homologous desensitization, beta- arrestins the GPCR from a G-protein signaling mode that bind to the GPRK-phosphorylated receptor transmits short-lived signals from the plasma and sterically preclude its coupling to the membrane via small molecule second cognate G-protein; the binding appears to messengers and ion channels to a require additional receptor determinants beta-arrestin signaling mode that transmits a exposed only in the active receptor distinct set of signals that are initiated as the conformation. The beta-arrestins target receptor internalizes and transits the many receptors for internalization by acting intracellular compartment. Acts as signaling as endocytic adapters (CLASPs, clathrin- scaffold for MAPK pathways such as MAPK1/3 associated sorting proteins) and recruiting (ERK1/2) and MAPK10 (JNK3). ERK1/2 and JNK3 the GPRCs to the adapter protein 2 complex activated by the beta-arrestin scaffold are 2 (AP-2) in clathrin-coated pits (CCPs). largely excluded from the nucleus and However, the extent of beta-arrestin confined to cytoplasmic locations such as involvement appears to vary significantly endocytic vesicles, also called beta-arrestin depending on the receptor, agonist and cell type. Internalized arrestin-receptor signalosomes. Acts as signaling scaffold for the complexes traffic to intracellular AKT1 pathway. GPCRs for which the endosomes, where they remain uncoupled beta-arrestin-mediated signaling relies on both from G-proteins. Two different modes of ARRB1 and ARRB2 (codependent regulation) arrestin- mediated internalization occur. include ADRB2, F2RL1 and PTH1R. For some Class A receptors, like ADRB2, OPRM1, GPCRs the beta-arrestin- mediated signaling ENDRA, D1AR and ADRA1B dissociate from relies on either ARRB1 or ARRB2 and is beta-arrestin at or near the plasma inhibited by the other respective beta-arrestin membrane and undergo rapid recycling. form (reciprocal regulation). Increases ERK1/2 Class B receptors, like AVPR2, AGTR1, signaling in AGTR1- and AVPR2- mediated NTSR1, TRHR and TACR1 internalize as a activation (reciprocal regulation). Involved in complex with arrestin and traffic with it to CCR7- mediated ERK1/2 signaling involving endosomal vesicles, presumably as ligand CCL19. Is involved in type-1A desensitized receptors, for extended angiotensin II receptor/AGTR1-mediated ERK periods of time. Receptor resensitization activity. Is involved in type-1A angiotensin II then requires that receptor-bound arrestin receptor/AGTR1-mediated MAPK10 activity. Is is removed so that the receptor can be involved in dopamine-stimulated AKT1 activity dephosphorylated and returned to the in the striatum by disrupting the association of plasma membrane. Mediates endocytosis of AKT1 with its negative regulator PP2A. Involved CCR7 following ligation of CCL19 but not in AGTR1-mediated chemotaxis. Appears to CCL21. Involved in internalization of P2RY1, function as signaling scaffold involved in P2RY4, P2RY6 and P2RY11 and regulation of MIP-1- beta-stimulated ATP-stimulated internalization of P2RY2. CCR5-dependent chemotaxis. Involved in Involved in phosphorylation-dependent attenuation of NF-kappa-B-dependent internalization of OPRD1 and subsequent recycling or degradation. Involved in transcription in response to GPCR or cytokine ubiquitination of IGF1R. Beta- arrestins stimulation by interacting with and stabilizing function as multivalent adapter proteins CHUK. Suppresses UV-induced that can switch the GPCR from a G-protein NF-kappa-B-dependent activation by signaling mode that transmits short-lived interacting with CHUK. The function is signals from the plasma membrane via promoted by stimulation of ADRB2 and small molecule second messengers and ion dephosphorylation of ARRB2. Involved in channels to a beta-arrestin signaling mode p53/TP53- mediated apoptosis by regulating that transmits a distinct set of signals that MDM2 and reducing the MDM2- mediated are initiated as the receptor internalizes degradation of p53/TP53. May serve as nuclear and transits the intracellular compartment. messenger for GPCRs. Upon stimulation of Acts as signaling scaffold for MAPK OR1D2, may be involved in regulation of gene pathways such as MAPK1/3 (ERK1/2) and expression during the early processes of MAPK10 (JNK3). ERK1/2 and JNK3 activated fertilization. Also involved in regulation of by the beta-arrestin scaffold are largely receptors other than GPCRs. Involved in excluded from the nucleus and confined to endocytosis of TGFBR2 and TGFBR3 and down- cytoplasmic locations such as endocytic regulates TGF-beta signaling such as Page 2/4 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 vesicles, also called beta-arrestin NF-kappa-B activation. Involved in endocytosis signalosomes. Acts as signaling scaffold for of low-density lipoprotein receptor/LDLR. the AKT1 pathway. GPCRs for which the Involved in endocytosis of smoothened beta-arrestin- mediated signaling relies on homolog/Smo, which also requires ADRBK1. both ARRB1 and ARRB2 (codependent Involved in endocytosis of SLC9A5. Involved in regulation) include ADRB2, F2RL1 and endocytosis of ENG and subsequent PTH1R. For some GPCRs the beta- TGF-beta-mediated ERK activation and arrestin-mediated signaling relies on either migration of epithelial cells. Involved in ARRB1 or ARRB2 and is inhibited by the Toll-like receptor and IL-1 receptor signaling other respective beta-arrestin form through the interaction with TRAF6 which (reciprocal regulation). Increases ERK1/2 prevents TRAF6 autoubiquitination and signaling in AGTR1- and AVPR2-mediated oligomerization required for activation of activation (reciprocal regulation). Involved NF-kappa-B and JUN. Involved in insulin in CCR7-mediated ERK1/2 signaling resistance by acting as insulin-induced involving ligand CCL19. Is involved in type-1A angiotensin II signaling scaffold for SRC, AKT1 and INSR. receptor/AGTR1-mediated ERK activity. Is Involved in regulation of inhibitory signaling of involved in type-1A angiotensin II natural killer cells by recruiting PTPN6 and receptor/AGTR1-mediated MAPK10 activity. PTPN11 to KIR2DL1. Involved in IL8-mediated Is involved in dopamine-stimulated AKT1 granule release in neutrophils. Involved in the activity in the striatum by disrupting the internalization of the atypical chemokine association of AKT1 with its negative receptor ACKR3. regulator PP2A. Involved in AGTR1-mediated chemotaxis. Appears
Recommended publications
  • Population-Specific Associations of Deleterious Rare Variants In
    International Journal of Molecular Sciences Article Population-Specific Associations of Deleterious Rare Variants in Coding Region of P2RY1–P2RY12 Purinergic Receptor Genes in Large-Vessel Ischemic Stroke Patients Piotr K. Janicki 1, Ceren Eyileten 2 ID , Victor Ruiz-Velasco 3, Khaled Anwar Sedeek 3, Justyna Pordzik 2, Anna Czlonkowska 2,4, Iwona Kurkowska-Jastrzebska 4 ID , Shigekazu Sugino 1, Yuka Imamura-Kawasawa 5, Dagmara Mirowska-Guzel 2 and Marek Postula 1,2,* ID 1 Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA; [email protected] (P.K.J.); [email protected] (S.S.) 2 Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, 02-097 Warsaw, Poland; [email protected] (C.E.); [email protected] (J.P.); [email protected] (A.C.); [email protected] (D.M.-G.) 3 Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA; [email protected] (V.R.-V.); [email protected] (K.A.S.) 4 2nd Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; [email protected] 5 Genome Sciences Facility, Penn State College of Medicine, Hershey, PA 17033, USA; [email protected] * Correspondence: [email protected]; Tel.: +48-221-166-160 Received: 20 September 2017; Accepted: 7 December 2017; Published: 11 December 2017 Abstract: The contribution of low-frequency and damaging genetic variants associated with platelet function to ischemic stroke (IS) susceptibility remains unknown. We employed a deep re-sequencing approach in Polish patients in order to investigate the contribution of rare variants (minor allele frequency, MAF < 1%) to the IS genetic susceptibility in this population.
    [Show full text]
  • Mouse Pancreatic Islet Macrophages Use Locally Released ATP to Monitor Beta Cell Activity
    Diabetologia DOI 10.1007/s00125-017-4416-y ARTICLE Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity Jonathan R. Weitz1,2 & Madina Makhmutova1,3 & Joana Almaça1 & Julia Stertmann4,5,6 & Kristie Aamodt7 & Marcela Brissova8 & Stephan Speier4,5,6 & Rayner Rodriguez-Diaz1 & Alejandro Caicedo1,2,3,9 Received: 14 February 2017 /Accepted: 14 July 2017 # Springer-Verlag GmbH Germany 2017 Abstract and used them to monitor macrophage responses to stimula- Aims/hypothesis Tissue-resident macrophages sense the mi- tion of acinar, neural and endocrine cells. croenvironment and respond by producing signals that act Results Islet-resident macrophages expressed functional locally to maintain a stable tissue state. It is now known that purinergic receptors, making them exquisite sensors of inter- pancreatic islets contain their own unique resident macro- stitial ATP levels. Indeed, islet-resident macrophages phages, which have been shown to promote proliferation of responded selectively to ATP released locally from beta cells the insulin-secreting beta cell. However, it is unclear how beta that were physiologically activated with high levels of glu- cells communicate with islet-resident macrophages. Here we cose. Because ATP is co-released with insulin and is exclu- hypothesised that islet macrophages sense changes in islet sively secreted by beta cells, the activation of purinergic re- activity by detecting signals derived from beta cells. ceptors on resident macrophages facilitates their awareness of Methods To investigate how islet-resident macrophages re- beta cell secretory activity. spond to cues from the microenvironment, we generated mice Conclusions/interpretation Our results indicate that islet mac- expressing a genetically encoded Ca2+ indicator in myeloid rophages detect ATP as a proxy signal for the activation state cells.
    [Show full text]
  • P2Y6 Receptors Regulate CXCL10 Expression and Secretion in Mouse Intestinal Epithelial Cells
    fphar-09-00149 February 26, 2018 Time: 17:57 # 1 ORIGINAL RESEARCH published: 28 February 2018 doi: 10.3389/fphar.2018.00149 P2Y6 Receptors Regulate CXCL10 Expression and Secretion in Mouse Intestinal Epithelial Cells Mabrouka Salem1,2, Alain Tremblay2, Julie Pelletier2, Bernard Robaye3 and Jean Sévigny1,2* 1 Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada, 2 Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada, 3 Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium In this study, we investigated the role of extracellular nucleotides in chemokine (KC, MIP- 2, MCP-1, and CXCL10) expression and secretion by murine primary intestinal epithelial cells (IECs) with a focus on P2Y6 receptors. qRT-PCR experiments showed that P2Y6 was the dominant nucleotide receptor expressed in mouse IEC. In addition, the P2Y6 Edited by: ligand UDP induced expression and secretion of CXCL10. For the other studies, we Kenneth A. Jacobson, −=− National Institutes of Health (NIH), took advantage of mice deficient in P2Y6 (P2ry6 ). Similar expression levels of P2Y1, −=− United States P2Y2, P2X2, P2X4, and A2A were detected in P2ry6 and WT IEC. Agonists of Reviewed by: TLR3 (poly(I:C)), TLR4 (LPS), P2Y1, and P2Y2 increased the expression and secretion Fernando Ochoa-Cortes, of CXCL10 more prominently in P2ry6−=− IEC than in WT IEC. CXCL10 expression Universidad Autónoma de San Luis −=− Potosí, Mexico and secretion induced by poly(I:C) in both P2ry6 and WT IEC were inhibited by Markus Neurath, general P2 antagonists (suramin and Reactive-Blue-2), by apyrase, and by specific Universitätsklinikum Erlangen, Germany antagonists of P2Y1, P2Y2, P2Y6 (only in WT), and P2X4.
    [Show full text]
  • Activation of Hypermethylated P2RY1 Mitigates Gastric Cancer by Promoting Apoptosis and Inhibiting Proliferation
    Activation of hypermethylated P2RY1 mitigates gastric cancer by promoting apoptosis and inhibiting proliferation Yinggang Hua Xiamen University Medical College Long Li Xiamen University Medical College Liangliang Cai Zhongshan Hospital Xiamen University Guoyan Liu ( [email protected] ) Zhongshan Hospital Xiamen University Research Article Keywords: Diffuse type gastric cancer, DNA methylation 450K array, P2RY1 receptor, ERK signal pathway, Tumor suppressor gene Posted Date: July 26th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-351723/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/16 Abstract P2RY1 receptor is known to cause cancer by activating the ERK signal pathway, its DNA methylation status or even the corresponding regulatory mechanism remains unknown. In this study, DNA methylation chip was used to prole the genome-wide DNA methylation level in gastric cancer tissues. Proliferation and apoptosis of the SGC7901 gastric cancer cell line were determined after treatment with a selective P2RY1 receptor agonist, MRS2365. The promoter region of P2RY1 was found to be highly methylated with 4 hypermethylated sites (|Δβ value| >0.2) in diffuse gastric cancer and then were validated by bioinformatic analysis in TCGA database. Analysis of MRS2365-treated cells by annexin-V/PI staining and Caspase-3 activity assays indicated the induction of apoptosis in SGC7901 cells. P2RY1 receptor activation in human SGC7901 gastric cancer cells via the MRS2365 agonist induced apoptosis and reduced cell growth. High DNA methylation in the promoter region of P2RY1 may have contributed to the reduced expression of P2RY1’s mRNA, which is likely responsible for the “aggressive” nature of the diffuse type gastric cancer.
    [Show full text]
  • Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
    Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation
    [Show full text]
  • Supplementary Table 1. Pain and PTSS Associated Genes (N = 604
    Supplementary Table 1. Pain and PTSS associated genes (n = 604) compiled from three established pain gene databases (PainNetworks,[61] Algynomics,[52] and PainGenes[42]) and one PTSS gene database (PTSDgene[88]). These genes were used in in silico analyses aimed at identifying miRNA that are predicted to preferentially target this list genes vs. a random set of genes (of the same length). ABCC4 ACE2 ACHE ACPP ACSL1 ADAM11 ADAMTS5 ADCY5 ADCYAP1 ADCYAP1R1 ADM ADORA2A ADORA2B ADRA1A ADRA1B ADRA1D ADRA2A ADRA2C ADRB1 ADRB2 ADRB3 ADRBK1 ADRBK2 AGTR2 ALOX12 ANO1 ANO3 APOE APP AQP1 AQP4 ARL5B ARRB1 ARRB2 ASIC1 ASIC2 ATF1 ATF3 ATF6B ATP1A1 ATP1B3 ATP2B1 ATP6V1A ATP6V1B2 ATP6V1G2 AVPR1A AVPR2 BACE1 BAMBI BDKRB2 BDNF BHLHE22 BTG2 CA8 CACNA1A CACNA1B CACNA1C CACNA1E CACNA1G CACNA1H CACNA2D1 CACNA2D2 CACNA2D3 CACNB3 CACNG2 CALB1 CALCRL CALM2 CAMK2A CAMK2B CAMK4 CAT CCK CCKAR CCKBR CCL2 CCL3 CCL4 CCR1 CCR7 CD274 CD38 CD4 CD40 CDH11 CDK5 CDK5R1 CDKN1A CHRM1 CHRM2 CHRM3 CHRM5 CHRNA5 CHRNA7 CHRNB2 CHRNB4 CHUK CLCN6 CLOCK CNGA3 CNR1 COL11A2 COL9A1 COMT COQ10A CPN1 CPS1 CREB1 CRH CRHBP CRHR1 CRHR2 CRIP2 CRYAA CSF2 CSF2RB CSK CSMD1 CSNK1A1 CSNK1E CTSB CTSS CX3CL1 CXCL5 CXCR3 CXCR4 CYBB CYP19A1 CYP2D6 CYP3A4 DAB1 DAO DBH DBI DICER1 DISC1 DLG2 DLG4 DPCR1 DPP4 DRD1 DRD2 DRD3 DRD4 DRGX DTNBP1 DUSP6 ECE2 EDN1 EDNRA EDNRB EFNB1 EFNB2 EGF EGFR EGR1 EGR3 ENPP2 EPB41L2 EPHB1 EPHB2 EPHB3 EPHB4 EPHB6 EPHX2 ERBB2 ERBB4 EREG ESR1 ESR2 ETV1 EZR F2R F2RL1 F2RL2 FAAH FAM19A4 FGF2 FKBP5 FLOT1 FMR1 FOS FOSB FOSL2 FOXN1 FRMPD4 FSTL1 FYN GABARAPL1 GABBR1 GABBR2 GABRA2 GABRA4
    [Show full text]
  • Extracellular ATP and CD39 Activate Camp-Mediated Mitochondrial Stress Response to Promote Cytarabine Resistance in Acute Myeloid Leukemia
    Extracellular ATP and CD39 activate cAMP-mediated mitochondrial stress response to promote cytarabine resistance in acute myeloid leukemia Nesrine Aroua1,2,#, Emeline Boet1,2,#, Margherita Ghisi1,2,#, Marie-Laure Nicolau-Travers1,2,3, Estelle Saland1,2, Ryan Gwilliam1,2, Fabienne de Toni1,2, Mohsen Hosseini1,2, Pierre-Luc Mouchel1,2,3, Thomas Farge1,2, Claudie Bosc1,2, Lucille Stuani1,2, Marie Sabatier1,2, Fetta Mazed4,5, Clément Larrue1,2, Latifa Jarrou1,2, Sarah Gandarillas6, Massimiliano Bardotti6, Muriel Picard2,7, Charlotte Syrykh1,2,8, Camille Laurent1,2,8, Mathilde Gotanègre1,2, Nathalie Bonnefoy9, Floriant Bellvert10, Jean-Charles Portais10, Nathalie Nicot11, Francisco Azuaje12, Tony Kaoma12, Carine Joffre1,2, Jérome Tamburini4,5, Christian Récher1,2,3,#, François Vergez1,2,3,# and Jean-Emmanuel Sarry1,2,* 1Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, F-31037 Toulouse, France. 2University of Toulouse, F-31077 Toulouse, France. 3Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, F- 31100 Toulouse, France. 4Institut Cochin, Département Développement, Reproduction, Cancer, UMR8104-CNRS, U1016- INSERM, Paris 5Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland. 6Centre Régional d'Exploration Fonctionnelle et Ressources Expérimentales, Service d'Expérimentation Animale, UMS006, Inserm, F-31037 Toulouse, France 7Intensive Care Unit, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, F- 31100 Toulouse, France. 1 8Service d’Anatomopathologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, F-31100 Toulouse, France 9Institut de Recherche en Cancérologie de Montpellier, U1194, Inserm, Université de Montpellier, Institut régional du Cancer de Montpellier, F-34298 Montpellier, France 10TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, F-31077, France.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • Purinergic Signaling in Cochlear Supporting Cells Reduces Hair
    RESEARCH ARTICLE Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space Travis A Babola1, Calvin J Kersbergen1, Han Chin Wang1†, Dwight E Bergles1,2,3* 1The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States; 2Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, United States; 3Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States Abstract Neurons in developing sensory pathways exhibit spontaneous bursts of electrical activity that are critical for survival, maturation and circuit refinement. In the auditory system, intrinsically generated activity arises within the cochlea, but the molecular mechanisms that initiate this activity remain poorly understood. We show that burst firing of mouse inner hair cells prior to hearing onset requires P2RY1 autoreceptors expressed by inner supporting cells. P2RY1 activation triggers K+ efflux and depolarization of hair cells, as well as osmotic shrinkage of supporting cells that dramatically increased the extracellular space and speed of K+ redistribution. Pharmacological inhibition or genetic disruption of P2RY1 suppressed neuronal burst firing by reducing K+ release, but unexpectedly enhanced their tonic firing, as water resorption by supporting cells reduced the extracellular space, leading to K+ accumulation. These studies indicate that purinergic signaling in *For correspondence: supporting cells regulates hair cell
    [Show full text]
  • Purinergic Receptors Brian F
    Chapter 21 Purinergic receptors Brian F. King and Geoffrey Burnstock 21.1 Introduction The term purinergic receptor (or purinoceptor) was first introduced to describe classes of membrane receptors that, when activated by either neurally released ATP (P2 purinoceptor) or its breakdown product adenosine (P1 purinoceptor), mediated relaxation of gut smooth muscle (Burnstock 1972, 1978). P2 purinoceptors were further divided into five broad phenotypes (P2X, P2Y, P2Z, P2U, and P2T) according to pharmacological profile and tissue distribution (Burnstock and Kennedy 1985; Gordon 1986; O’Connor et al. 1991; Dubyak 1991). Thereafter, they were reorganized into families of metabotropic ATP receptors (P2Y, P2U, and P2T) and ionotropic ATP receptors (P2X and P2Z) (Dubyak and El-Moatassim 1993), later redefined as extended P2Y and P2X families (Abbracchio and Burnstock 1994). In the early 1990s, cDNAs were isolated for three heptahelical proteins—called P2Y1, P2Y2, and P2Y3—with structural similarities to the rhodopsin GPCR template. At first, these three GPCRs were believed to correspond to the P2Y, P2U, and P2T receptors. However, the com- plexity of the P2Y receptor family was underestimated. At least 15, possibly 16, heptahelical proteins have been associated with the P2Y receptor family (King et al. 2001, see Table 21.1). Multiple expression of P2Y receptors is considered the norm in all tissues (Ralevic and Burnstock 1998) and mixtures of P2 purinoceptors have been reported in central neurones (Chessell et al. 1997) and glia (King et al. 1996). The situation is compounded by P2Y protein dimerization to generate receptor assemblies with subtly distinct pharmacological proper- ties from their constituent components (Filippov et al.
    [Show full text]
  • Extracellular ATP and CD39 Activate Camp-Mediated Mitochondrial Stress Response to Promote Cytarabine Resistance in Acute Myeloid Leukemia
    Published OnlineFirst July 8, 2020; DOI: 10.1158/2159-8290.CD-19-1008 RESEARCH ARTICLE Extracellular ATP and CD39 Activate cAMP-Mediated Mitochondrial Stress Response to Promote Cytarabine Resistance in Acute Myeloid Leukemia Nesrine Aroua1,2, Emeline Boet1,2, Margherita Ghisi1,2, Marie-Laure Nicolau-Travers1,2,3, Estelle Saland1,2, Ryan Gwilliam1,2, Fabienne de Toni1,2, Mohsen Hosseini1,2, Pierre-Luc Mouchel1,2,3, Thomas Farge1,2, Claudie Bosc1,2, Lucille Stuani1,2, Marie Sabatier1,2, Fetta Mazed4,5, Clément Larrue1,2, Latifa Jarrou1,2, Sarah Gandarillas6, Massimiliano Bardotti6, Muriel Picard2,7, Charlotte Syrykh1,2,8, Camille Laurent1,2,8, Mathilde Gotanègre1,2, Nathalie Bonnefoy9, Floriant Bellvert10, Jean-Charles Portais10, Nathalie Nicot11, Francisco Azuaje12, Tony Kaoma12, Carine Joffre1,2, Jérome Tamburini4,5, Christian Récher1,2,3, François Vergez1,2,3, and Jean-Emmanuel Sarry1,2 ABSTRACT Relapses driven by chemoresistant leukemic cell populations are the main cause of mortality for patients with acute myeloid leukemia (AML). Here, we show that the ectonucleotidase CD39 (ENTPD1) is upregulated in cytarabine-resistant leukemic cells from both AML cell lines and patient samples in vivo and in vitro. CD39 cell-surface expression and activity is increased in patients with AML upon chemotherapy compared with diagnosis, and enrichment in CD39-expressing blasts is a marker of adverse prognosis in the clinics. High CD39 activity promotes cytarabine resist- ance by enhancing mitochondrial activity and biogenesis through activation of a cAMP-mediated adap- tive mitochondrial stress response. Finally, genetic and pharmacologic inhibition of CD39 ecto-ATPase activity blocks the mitochondrial reprogramming triggered by cytarabine treatment and markedly enhances its cytotoxicity in AML cells in vitro and in vivo.
    [Show full text]