Semantic Organization of Product Lifecycle Information Through a Modular Ontology

Total Page:16

File Type:pdf, Size:1020Kb

Semantic Organization of Product Lifecycle Information Through a Modular Ontology INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015 Semantic organization of product lifecycle information through a modular ontology Giulia Bruno exploited by SMEs. Studies estimated that information Abstract—It is known that one of the main reasons of the success retrieval is not efficient and around 50% of the available of manufacturing enterprises is their ability to design and maintain a knowledge is not stored in information systems [5]. coherent structure to represent their knowledge, especially the small In literature, a recent trend about manufacturing knowledge and medium sized enterprises (SMEs), which are not often organized management is the inclusion of semantic models, both to help to manage information efficiently. Several commercial PLM systems have been developed in the last years to help companies in the company in organizing and sharing their data, and to allow organizing their large amount of data, but they are rarely exploited the easy finding of information and its reuse. In fact, mainly due to the high cost and difficult customization. Recent trends ontologies make it possible to integrate information from in literature focused on the development of semantic knowledge different abstraction levels, and they improve knowledge management systems, both to help companies in organizing and capture and reuse [6]. Several ontologies have already been sharing their data and to allow the easy finding of information and its proposed for knowledge management in manufacturing, but reuse. The aim of this paper is to develop a knowledge management system to structure the product lifecycle knowledge of SMEs based they mainly develop semantic models to grant interoperability on a modular ontology. The modular ontology contains a reference among different systems or they are product-centric ontologies ontology to represent the main concepts with their relationships, and containing very detailed information on product features and several domain-specific ontologies to specialize and enrich the few details about actual product management. reference ontology with specific information. Particularly, this paper From the experience derived from the EU-FP7 amePLM is focused on the specification of the reference ontology with a project, it emerged that one of the main problems of SMEs is manufacturing process ontology module. Some examples of the usage of the system to extract information through SPARQL queries are the lack of a semantic structure to link the different kinds of also presented. information generated about a product during its whole lifecycle. This information has to be easily searchable based Keywords—Information retrieval, knowledge modeling, on criteria different from company to company. Thus, the aim manufacturing systems, semantic model. of this work is to design a more simple tool to support the manufacturing knowledge management, based on a modular I. INTRODUCTION sets of ontologies. LTHOUGH knowledge management systems proved A single reference ontology contains the basic concepts A their applicability and benefits in many domains, the together with the relationships among them, and a set of design and the maintenance of the underlying knowledge base domain-specific ontologies are integrated to extend and is still a complex and costly task [1]. Especially in the specialize the basic concepts. The modular structure of manufacturing domain, the product lifecycle knowledge has to ontologies allow an easy customization to include the specific be carefully organized and stored because unreliable knowledge that is needed time by time by a company. This knowledge prevents the reuse of the results achieved utilizing paper is mainly focused on the specification of the reference human excellence [2]. ontology with the manufacturing processes knowledge. However, companies (especially SMEs) usually do not use a The rest of the paper is organized as follows. Section 2 knowledge management system, thus are not able to efficiently presents the recent works addressing the exploitation of reuse previous information [3]. Furthermore, people who ontologies in manufacturing. Section 3 and Section 4 detail the worked in an enterprise may have very valuable knowledge, development process of the modular ontology at the basis of and when they leave their knowledge is taken away [4]. the proposed knowledge management system. Section 5 Several commercial PLM tools were developed in the last describes the whole architecture of the proposed knowledge years, but they are seen as complex software which need a management system and gives details on its implementation. huge effort to be understood and used, thus are rarely Section 6 shows how the ontology is populated with concrete data and how it is queried to retrieve information. Finally, This work was partially supported by the EU-FP7 research project on Section 7 draws conclusions and states future works. Advanced Platform for Manufacturing Engineering and Product Lifecycle Management (amePLM, contract number 285171). G. Bruno is with the Department of Management and Production II. RELATED WORKS Engineering of Politecnico di Torino, Italy (phone: 00390110907280; fax: Several works focused on the development of semantic 00390110907299; e-mail: [email protected]). ISSN: 1998-4464 16 INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015 models for specific products or specific lifecycle phases in by integrating a specific manufacturing ontology. order to store information and share it among applications. However, previous works are mainly focused in representing III. MODULAR ONTOLOGY very detailed information about specific aspects of product According to [14], the process to define an ontology starts management for interoperability purpose. For example, [7] from the identification of the set of relevant concepts, then addressed the development of an ontological assembly model proceeds with the organization of concepts in a formal model to allow the interoperability between software platforms. [8] representing the ontology structure, and finally performs the focused on semantic integration of PLM objects based on an implementation of the model in OWL. This procedure was ontology, but they consider only concepts derived from the bill followed to define the reference ontology and then again to of material to create the ontology. [9] proposed an ontology to define each domain-specific ontology. eliminate confusion of semantic concepts in the ship-building industry by using a classification trees. A. Reference ontology Under the FP6 project PROMISE, [10] developed a As described in more details in [22], the set of high level semantic object model for product data and knowledge concepts needed to represent the product lifecycle management in UML language, and then translated that model management knowledge of a company are the following. in EXPRESS language to create a new Product Lifecycle Production item: either a product or a product Management Standard as an extension of STEP. [11] component. Each product can be made of several developed a port-based ontology to represent the intended components, and the same component can be used by exchange of signals, energy, and materials. [12] introduced an different products. Each component can be in turn be approach to support interoperability in product data composed by other components. management, while [13] developed a manufacturing core Characteristic: a material, a functional characteristic or a physical characteristic (e.g., height, length, width, weight, ontology model to integrate design and manufacturing etc) which refers to a production item. computer-based systems. [14] showed the benefits of applying Customer: the reference person or company who ordered ontologies to support knowledge sharing in PLM with a focus a product. on assembly processes. Also approaches to develop a Activity: an action executed during the lifecycle of a communication interface for different design support systems product by one or more resources, which has one or more to share platform independent product, process and system files in input and produces one or more files in output. related knowledge were proposed [15]. Under the FP7 project File: an electronic source of information, which is iProd, [16] developed a set of ontologies for integrating involved in an activity and refers to one or more engineering data from heterogeneous IT systems. resources or production items. A recent work addresses the definition of a manufacturing Resource: an entity that is involved in the execution of an process ontology to formalize the semantics of manufacturing activity. It can be of two kinds, Person or Machine. capability knowledge [17]. Also the present work has the aim Role: the role of a person denoting his/her skills in the of constructing a scalable and shared manufacturing process company. knowledge system. However, the model proposed in this paper These concepts were organized in a formal model, shown in covers not only the manufacturing processes but all the Fig.1, according to the UML class diagram formalism [23]. information involved in the product lifecycle. In fact, the The Production item class is linked to the Customer class to manufacturing process is only one of the types of activities store the customer who ordered each product. A production done during the product lifecycle, which starts from the design item is also associated to the Characteristic class to store the and ends
Recommended publications
  • One Company, Many Solutions BC062019 Smart Agriculture & Construction One Company, Many Solutions
    Smart Agriculture & Construction Electrification Technology One Company, Many Solutions BC062019 Smart Agriculture & Construction One Company, Many Solutions Thermal Solutions Aavid, Thermal Division of Boyd Corporation, Aavid meets the challenge of thermal control Applications: o Battery Module Cooling o Inverters & DC/DC Converters Integration of Technology o Computer Systems for Agriculture and Construction OEMs Autonomous Farming are integrating more technology o IGBT Cooling features, like communications o Thermal Management for systems, on board processing for Self-driving computers sensor arrays, and system Sensors and LiDAR optimization electronic units. To Navigation address the thermal challenges of Telematics Systems connectivity and electrification, Boyd o LED Lighting designs and manufactures durable thermal solutions & systems for Technologies: high-performance cooling. o Vapor Chambers o Thermal Interface Materials Thermal Management o Heat Pipes By integrating and optimizing a wide o Liquid Cooling Systems range of cooling technologies, Aavid o Heat Shielding engineers develop lighter, more reliable thermal systems to meet your application needs, including power conversion solutions, heat shielding, and LED cooling. Smart Agriculture & Construction One Company, Many Solutions Precision Converting Solutions Boyd is an innovative precision converter with extensive experience in the Agriculture & Construction Industries ranging from display protection and sealing for sensor systems to ergonomic molds for internal cabin control systems. We turn concepts into components. From design to manufacturing to packaging and logistics, Boyd provides full-service solutions that transform your innovative ideas into reality. Applications: Quick-Turn Prototyping o HMI and Display Films Our CNC Laser, Knife, and o Graphite Heat Spreaders for Displays Waterjet die-less prototyping o Screen & Surface Protectors systems, with Flashnesting o Custom Hoses software, allow us to quickly o O-Rings convert drawings to prototype parts without the need of tooling.
    [Show full text]
  • 2.810 Manufacturing Processes and Systems
    2.810 manufacturing processes and systems Prof. Tim Gutowski, [email protected] September 4, 2013 Prereq: 2.001, 2.006, 2.008 Hands-on Experience Processes to Systems Today’s Agenda • Business – You – Us – Class/Project • Concepts – Manufacturing Enterprise – Processes – Communication Tools Please fill out information form •Basic information •Experience in shop •Experience in mfg 52 students Pre-registered for 2.810 1. Artiles,Jessica A. 1. Modak,Ashin Pramod 2. Bhadauria,Anubha-Sin 2. Modi,Vrajesh Y 3. Chandar,Arjun Subram 3. Morris,Taylor J. 4. Chang,Woolim 4. Olle,Chase R. 5. Charpentier,Erik Leo 5. Pak,Nikita 6. Chawla,Yugank 6. Pan,Yichao 7. Chiang,Jerry Kao 7. Penalver-Aguila,Llui 8. Churchill,Hugh Edwar 8. Pharr,Vanea Ryann 9. Colucci,Lina Avancin 9. Pombrol,Christopher 10. Garcia,Jose Manuel 10. Puszko,Gregory D. 11. Georgiadis,Vasilis 11. Ramos,Joshua D 12. Ghosh,Sourobh 12. Ranjan,Aditya 13. Graves,Carmen M 13. Reed,Christian R. 14. Guan,Dong 14. Rodrigo,Michael 15. Jain,Sonam 15. Secundo,Rafael Garci 16. Jamerson,Holly M. 16. Sedore,Blake William 17. Jiang,Sheng 17. Shah,Adhvait M. 18. Kimball,Peter Evan 18. Solomon,Brian Richmo 19. Knodel,Philip Clinto 19. Sondej,Nicholas Matt 20. Kuan,Jiun-Yih 20. Sun,Xu 21. Larson,Richard W 21. Swamy,Tushar 22. Llorens - Bonilla,Ba 22. Taylor,David Donald 23. Lopez,Saul 23. Thomas,Dale Arlingto 24. Mangan,Esther Hu 24. Wu,Faye Y 25. Mantzavinou,Aikateri 25. Xu,Ruize 26. McMullin,Nathan Keit 26. deGuzman,Jeremy Erne Bill Buckley [email protected] Basic info can be found on the 2.810 webpage web page: http://web.mit.edu/2.810/www Instructor: Prof.
    [Show full text]
  • Part I. Design Subtypes Part II. Die Varieties
    This checklist is my attempt to compile a comprehensive listing of all known variety and error types, subtypes, and associated effects. While the traditional planchet-die-striking method of classification hasn't been completely abandoned, it has been absorbed into a much more detailed and precise taxonomy. This is intended to reflect the numerous steps (and mis- steps) in the minting process that generate the great diversity of anomalies presented here. Many of the categories will be familiar to veteran collectors. Others will perhaps be dimly recalled, while others will be unfamiliar. Many of the more obscure error types have been treated in detail in articles published in Errorscope. These articles are referenced next to the appropriate entry (“ES”). Other treatments can be found in Coin World (“CW”). I have tried to restrict this checklist to basic error/variety types and subtypes. Combination errors have been kept to a minimum. Had I attempted to incorporate all conceivable two-error combinations, this would have generated almost half a million entries. That would have been both unwieldy and unnecessary. This checklist is a continually evolving project. Updated editions are posted on the CONECA website at odd intervals. Thumbnail illustrations are planned for the next edition. The ultimate goal is to use this checklist as the nucleus for a massive encyclopedia. ES=Errorscope CW=Coin World Part I. Design Subtypes Design subtype, e.g. 1817 large cent with 15 stars 1828 half cent with 12 stars Seated Liberty dimes and half dimes, with and without arrows in same year Prototypes and patterns released into circulation 1916 Liberty Head (“Mercury”) dimes 1971 Eisenhower dollar prototype (CW 9/29/08) Minor mid-year design modification, e.g.
    [Show full text]
  • Introduction and Classification of Forging Processes
    NPTEL - Mechanical Engineering - Forming Introduction and classification of forging processes 1.1 Introduction: Bulk deformation processes involve shaping of materials to finished products which have small surface area to thickness or surface area to volume ratio. Sheet metal forming produces parts having large surface area to thickness ratio. In sheet metal forming thickness variations are not desirable. Examples for sheet metal forming are: beverage cans, automobile body etc. Bulk forming processes may be primary processes such as rolling of ingot to blooms or billets, in which the cast metal is formed into semi-finished raw material. In secondary forming, the raw materials, such as blooms, billets are converted into finished parts such as gears, wheels, spanners etc. Rolling, forging, extrusion and drawing are bulk forming processes. The present module describes the salient aspects of forging process. 1.2 Forging: In ancient times, people employed forging for making coins, jewelry, weapons, Forging is a deformation processing of materials through compressive stress. It is carried out either hot or cold. Hot forging is done at temperatures above recrystallization temperatures, typically 0.6 Tm, or above, where Tm is melting temperature. Warm forging is done in the temperature range: 0.3 Tm to 0.5 Tm. Cold forging has advantages such as good surface finish, high strength and greater accuracy. Hot forging requires lower loads, because flow stress gets reduced at higher temperatures. Strain rates in hot working may be high – 0.5 to 500 s-1. Strains in hot forging are also high – true strains of 2 to 4. Are common. Typical applications of forging include bolts, disks, gears, turbine disk, crank shaft, connecting rod, valve bodies, small components for hydraulic circuits etc.
    [Show full text]
  • Manufacturing Technology I Unit I Metal Casting
    MANUFACTURING TECHNOLOGY I UNIT I METAL CASTING PROCESSES Sand casting – Sand moulds - Type of patterns – Pattern materials – Pattern allowances – Types of Moulding sand – Properties – Core making – Methods of Sand testing – Moulding machines – Types of moulding machines - Melting furnaces – Working principle of Special casting processes – Shell – investment casting – Ceramic mould – Lost Wax process – Pressure die casting – Centrifugal casting – CO2 process – Sand Casting defects. UNIT II JOINING PROCESSES Fusion welding processes – Types of Gas welding – Equipments used – Flame characteristics – Filler and Flux materials - Arc welding equipments - Electrodes – Coating and specifications – Principles of Resistance welding – Spot/butt – Seam – Projection welding – Percusion welding – GS metal arc welding – Flux cored – Submerged arc welding – Electro slag welding – TIG welding – Principle and application of special welding processes – Plasma arc welding – Thermit welding – Electron beam welding – Friction welding – Diffusion welding – Weld defects – Brazing – Soldering process – Methods and process capabilities – Filler materials and fluxes – Types of Adhesive bonding. UNIT III BULK DEFORMATION PROCESSES Hot working and cold working of metals – Forging processes – Open impression and closed die forging – Characteristics of the process – Types of Forging Machines – Typical forging operations – Rolling of metals – Types of Rolling mills – Flat strip rolling – Shape rolling operations – Defects in rolled parts – Principle of rod and wire drawing – Tube drawing – Principles of Extrusion – Types of Extrusion – Hot and Cold extrusion – Equipments used. UNIT IV SHEET METAL PROCESSES Sheet metal characteristics – Typical shearing operations – Bending – Drawing operations – Stretch forming operations –– Formability of sheet metal – Test methods – Working principle and application of special forming processes – Hydro forming – Rubber pad forming – Metal spinning – Introduction to Explosive forming – Magnetic pulse forming – Peen forming – Super plastic forming.
    [Show full text]
  • Metal Forming Practise
    Metal Forming Practise Processes - Machines - Tools Bearbeitet von Heinz Tschätsch, A Koth 1. Auflage 2006. Buch. xii, 406 S. Hardcover ISBN 978 3 540 33216 9 Format (B x L): 17 x 24,2 cm Gewicht: 2230 g Weitere Fachgebiete > Technik > Produktionstechnik > Werkzeugbau schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Contents Preface ................................................................................................................................ V Terms, symbols and units ................................................................................................. 1 Part I Metal forming and shearing processes ................................................................. 3 1 Types of production processes .............................................................................. 5 2 Terms and parameters of metal forming ............................................................. 7 2.1 Plastic (permanent) deformation ............................................................................... 7 2.2 Flow stress................................................................................................................ 8 2.3 Deformation resistance.............................................................................................
    [Show full text]
  • Open-Die Forging
    Manufacturing Engineering Technology in SI Units, 6th Edition Chapter 14: Metal-Forging Processes and Equipments Copyright © 2010 Pearson Education South Asia Pte Ltd Chapter Outline Introduction Open-die Forging Impression-die and Closed-die Forging Various Forging Operations Forgeability of Metals; Forging Defects Die Design, Die Materials, and Lubrication Die-manufacturing Methods and Die Failures Forging Machines Economics of Forging Copyright © 2010 Pearson Education South Asia Pte Ltd Introduction Forging process is where workpiece is shaped by compressive forces applied through dies and tooling Forging operations produce discrete parts Forged parts have good strength and toughness, and are reliable for highly stressed and critical applications Forging can carry out at room temperature (cold forging) or at elevated temperatures (warm or hot forging) depending on the homologous temperature Copyright © 2010 Pearson Education South Asia Pte Ltd Introduction Copyright © 2010 Pearson Education South Asia Pte Ltd Open-die Forging Open-die forging is the simplest forging operation Copyright © 2010 Pearson Education South Asia Pte Ltd Open-die Forging Open-die forging is where a solid workpiece is placed between two flat dies and reduced in height by compressing it Also called upsetting or flat die forging Workpiece is deformed uniformly under frictionless conditions Copyright © 2010 Pearson Education South Asia Pte Ltd Open-die Forging Barreling is caused by frictional forces that oppose the outward flow of the workpiece
    [Show full text]
  • 2019-2020-Catalog.Pdf
    UNITED ABRASIVES / 2019-2020 SAIT CATALOG MANUFACTURING HEADQUARTERS ADDRESS 185 BOSTON POST ROAD, NORTH WINDHAM, CT 06256 www. PHONE: 860-456-7131 U E-MAIL: [email protected] nited A CUSTOMER SERVICE brasives.com US TOLL FREE: 800-428-5927 US FAX ORDERS: 860-456-8341 EmAIL: [email protected] CANADA SALES: 800-345-7248 EmAIL CANADA: [email protected] WWW.UNITEDABRASIVES.COM 2019 – 2020 2019 AMERICAN MaDE INDUSTRIAL GRADE FIRST FULLY AUTOMATED CATALOG INDEX BONDED ABRASIVE PRESS MANUFACTURING PATENT FILED FACILITY OPENED IN FOR TYPE 27 .045” NAPLES, FLORIDA CUTTING WHEEL GRINDING WHEELS .............. 6 CUTTING WHEELS ............... 26 1/4" GRINDING WHEELS: TYPE 27 . 8-12 HOW to PICK A CuttING Wheel . 28-29 STATE OF THE ART ROBOTICS 1/4" GRINDING WHEELS: TYPE 28 . 13 .045" CuttING Wheels . 30-33 INTRODUCED INTO OUR FLEXIBLE GRINDING / .090" CuttING & NotchING Wheels . 34-35 MANUFACTURING PROCESS BLENDING WHEELS: TYPE 29 . 14 .095" UltImate COMBO Wheels . 36 1/8" PIPelINE Wheels . 15-17 3/32" & 1/8" CuttING Wheels . 37-38 CUP STONES . 18-19 TOOL ROOM . 39 2019 MOUNTED POINTS . .. 20 THIN HIGH SPEED Cut-OFF . 40-41 AND CONES & PLUGS . 21 Small DIameteR PORtable Saw BENCH Wheels . 22 Cut-OFF Wheels . 42 2001 BEYOND HAND & FLOOR RUBS . 23 LARGE DIameteR CuttING Wheels . 43-49 COTTON FIBER . 24-25 CHOP Saw WHEELS . 44-45 PORtable Saw WHEELS . 46-47 1996 2004 2009 2014 STReet Saw WHEELS . 48 THE StatIONARY Saw WHEELS . .. 49 AY AME D WORLDWIDE LEADER IN THE Metal-CuttING CARBIDE BlaDES . 50-53 S ING SHIpp ABRASIVES INDUSTRY DIAMOND BlaDES .
    [Show full text]
  • Standard Specifications Airport Construction
    STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES STANDARD SPECIFICATIONS FOR AIRPORT CONSTRUCTION TUNUNAK AIRPORT RELOCATION AIP No. 3-02-0486-001-2012 / 51791 (Advisory Circular 150/5370-10, Standards for Specifying Construction of Airports, as modified, and approved by the Federal Aviation Administration for Airport Improvement Program contracts in Alaska) NOTE: Special Provisions for each project are marked as changes to the text of the Standard Specifications. Deleted text is identified by strikethrough. Additions are underlined. CONTENTS Page Number GENERAL PROVISIONS Section 10. Definitions and Terms………………………………………………… ... GCP-10-1 to GCP-10-9 Section 20. Bidding Requirements and Conditions………………………………… GCP-20-1 to GCP-20-5 Section 30. Award and Execution of Contract……………………………………… GCP-30-1 to GCP-30-5 Section 40. Scope of Work…………………………………………………………… GCP-40-1 to GCP-40-6 Section 50. Control of Work……………………………………………………… ...... GCP-50-1 to GCP-50-13 Section 60. Control of Materials……………………………………………………… GCP-60-1 to GCP-60-10 Section 70. Legal Relations and Responsibility to Public………………………… GCP-70-1 to GCP-70-8 Section 80. Prosecution and Progress……………………………………………… GCP-80-1 to GCP-80-15 Section 90. Measurement and Payment…………………………………………… . GCP-90-1 to GCP-90-8 Section 100. Contractor Quality Control Program………………………………… . GCP-100-1 to GCP-100-6 Section 110. Method of Estimating Percentage of Material Within Specification Limits (PWL)……………………………………. GCP-110-1 to GCP-110-5 DRAINAGE Item D-701 Storm Drains and Culverts…………………………………………… ... D-701-1 to D-701-6 Item D-760 Thaw Pipe and Thaw Wires…………………………………………… .. D-760-1 to D-760-6 FENCING Item F-162 Chain Link Fence………………………………………………………… F-162-1 to F-162-3 Item F-170 Steel Bollard……………………………………………………………… F-170-1 to F-170-2 CONTRACTOR FURNISHED SERVICES Item G-100 Mobilization and Demobilization…………………………………………………….
    [Show full text]
  • Focus on Applications
    FOCUS ON APPLICATIONS DIE BLANKS AND HUBS COIN PRODUCTION Minted collector coins are sought-after the world TOOLS: REPEATABLE over. Coins are made from a metal strip in a multi- PRECISION GRINDING AND stage process. Repeated annealing and rolling gives POLISHING the metal the required thickness and sheen. The next step is to punch the discs (coin blanks). Each blank is individually weighed before all the blanks are an- nealed and washed in a ball-bearing bath. In the final stage they are struck with the design to produce the finished coin. OPTIMISING THE MANUFACTURING PROCESS WITH MECHANICAL FINISHING OTEC Präzisionsfinish drag finishing machines provide repeatable precision surface processing at two quality-related points in the process of turning metal into money. In specific terms: me- chanical, repeatable surface smoothing and polishing of the die blank, and of the hub produced from it after laser engraving. THE HUMAN FACTOR AFFECTS QUALITY Hubs are made using an upstroke hubbing press fitted with production dies, also known as die blanks. The more evenly smooth and polished the surface of the die blank, the higher its quality, which is why grinding and polishing it pays off. This is often done manually in a hugely time- consuming process using turntables and diamond paste. Each tool has to be individually fin- ished. Further downstream in the coining process the resulting manufactured hub is laser- engraved with the coin design. To maximise the life of these engraved hubs and produce flaw- less coins, they are usually manually polished – once again a time-intensive process. Both of these finishing tasks, i.e.
    [Show full text]
  • Manufacturing Technology
    Cold working The process is usually performed at room temperature, but mildly elevated temperatures may be used to provide increased ductility and reduced strength For example: Deforming lead at room temperature is a hot working process because the recrystallization temperature of lead is about room temperature. Effects of Cold Working Deformation using cold working results in · Higher stiffness, and strength, but · Reduced malleability and ductility of the metal. · Anisotropy Advantages . No heating is required . Strength, fatigue and wear properties are improved through strain hardening . Superior dimensional control is achieved, so little, if any, secondary machining is required . Better surface finish is obtained . Products possess better reproducibility and interchangeability . Directional properties can be imparted . Contamination problems are minimized Disadvantages . Higher forces are required to initiate and complete the deformation . Less ductility is available . Intermediate anneals may be required to compensate for the loss of ductility that accompanies strain hardening . Heavier and more powerful equipment is required . Metal surfaces must be clean and scale-free . Imparted directional properties may be detrimental . Undesirable residual stresses may be produced Cold-working Processes . Squeezing . Bending . Shearing . Drawing . Presses Classifications of Squeezing Processes . Rolling . Cold Forging . Sizing . Staking . Staking . Coining . Burnishing . Extrusion . Peening . Hubbing . Riveting . Thread Rolling ROLLING Process used in sheets, strips, bars, and rods to obtain products that have smooth surfaces and accurate dimensions; most cold-rolling is performed on four-high or cluster-type rolling mills Flat Rolling A sheet or block or strip stock is introduced between rollers and then compressed and squeezed. Thickness is reduced. The amount of strain (deformation) introduced determines the hardness, strength and other material properties of the finished product.
    [Show full text]
  • 2.810 Manufacturing Processes and Systems
    2.810 manufacturing processes and systems Prof. Tim Gutowski, [email protected] September 5, 2018 Prereq: 2.001, 2.006, 2.008 (translation: solid & fluid mech, heat transfer, mfg) 1 Today’s Agenda • Business – Administrative stuff – Your background • Concepts – Manufacturing Enterprise – Big Picture – Processes – Systems 2 Basic info can be found on the 2.810 webpage web page: http://web.mit.edu/2.810/www Instructor: Prof. T. G. Gutowski Rm. 35-234 [email protected] T.A.: John Lewandowski Rm 35- 135 [email protected] Tech Inst: Mr. Paul Carson Rm. 35-112 [email protected] Text: Manufacturing Engineering and Technology, 7th Ed. Kalpakjian and Schmid, 2014. Prentice Hall. 3 Paul Carson & the Bldg 35 Shop [email protected] 4 Hands-on Experience Processes to Systems 5 2.810 Schedule * https://www.youtube.com/watch?v=ICjQ0UzE2Ao 6 2.810 team project 7 2.810 Labs Labs 9-12 M, T, R, F; Building 35 shop Week of September 10 Safety, Shop Orientation, Car Review Week of September 17 Machining /Flashlight Project Week of September 24 Machining /Flashlight Project Week of October 1 Machining /Flashlight Project Week of October 8 CAD/CAM (extra flashlight if needed) Week of October 15 Finish up Lab (QUIZ Week) Week of October 22 Car Project (this continues through term) Lab Maximum 16 people 8 Teams and Labs are Different • Labs occur at the beginning of the term: basic skills some CNC • Teams are to build cars: you select your team members, usually 4 to 6 per team 9 Key dates for project Sept 17 - Teams finalized October 1 - Kits assembled Week of Oct 1 -
    [Show full text]