Journal of Fungi Review Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement Catherine Madzak † Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-78850 Thiverval-Grignon, France;
[email protected] † INRAE Is France’s New National Research Institute for Agriculture, Food and Environment, Created on 1 January 2020 by the Merger of INRA, the National Institute for Agricultural Research, and IRSTEA, the National Research Institute of Science and Technology for the Environment and Agriculture. Abstract: Among non-conventional yeasts of industrial interest, the dimorphic oleaginous yeast Yarrowia lipolytica appears as one of the most attractive for a large range of white biotechnology applications, from heterologous proteins secretion to cell factories process development. The past, present and potential applications of wild-type, traditionally improved or genetically modified Yarrowia lipolytica strains will be resumed, together with the wide array of molecular tools now available to genetically engineer and metabolically remodel this yeast. The present review will also provide a detailed description of Yarrowia lipolytica strains and highlight the natural biodiversity of this yeast, a subject little touched upon in most previous reviews. This work intends to fill Citation: Madzak, C. Yarrowia this gap by retracing the genealogy of the main Yarrowia lipolytica strains of industrial interest, by lipolytica Strains and Their illustrating the search for new genetic backgrounds and by providing data about the main publicly Biotechnological Applications: How available strains in yeast collections worldwide. At last, it will focus on exemplifying how advances Natural Biodiversity and Metabolic in engineering tools can leverage a better biotechnological exploitation of the natural biodiversity of Engineering Could Contribute to Cell Yarrowia lipolytica and of other yeasts from the Yarrowia clade.