View-Centric Performance Optimization for Database-Backed Web Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(DDL) Reference Manual
Data Definition Language (DDL) Reference Manual Abstract This publication describes the DDL language syntax and the DDL dictionary database. The audience includes application programmers and database administrators. Product Version DDL D40 DDL H01 Supported Release Version Updates (RVUs) This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all subsequent H-series RVUs, and G06.26 and all subsequent G-series RVUs, until otherwise indicated by its replacement publications. Part Number Published 529431-003 May 2010 Document History Part Number Product Version Published 529431-002 DDL D40, DDL H01 July 2005 529431-003 DDL D40, DDL H01 May 2010 Legal Notices Copyright 2010 Hewlett-Packard Development Company L.P. Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license. The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. Export of the information contained in this publication may require authorization from the U.S. Department of Commerce. Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation. Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. -
Modern Web Application Frameworks
MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY Û¡¢£¤¥¦§¨ª«¬Æ°±²³´µ·¸¹º»¼½¾¿Ý Modern Web Application Frameworks MASTER’S THESIS Bc. Jan Pater Brno, autumn 2015 Declaration Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or ex- cerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Bc. Jan Pater Advisor: doc. RNDr. Petr Sojka, Ph.D. i Abstract The aim of this paper was the analysis of major web application frameworks and the design and implementation of applications for website content ma- nagement of Laboratory of Multimedia Electronic Applications and Film festival organized by Faculty of Informatics. The paper introduces readers into web application development problematic and focuses on characte- ristics and specifics of ten selected modern web application frameworks, which were described and compared on the basis of relevant criteria. Practi- cal part of the paper includes the selection of a suitable framework for im- plementation of both applications and describes their design, development process and deployment within the laboratory. ii Keywords Web application, Framework, PHP,Java, Ruby, Python, Laravel, Nette, Phal- con, Rails, Padrino, Django, Flask, Grails, Vaadin, Play, LEMMA, Film fes- tival iii Acknowledgement I would like to show my gratitude to my supervisor doc. RNDr. Petr So- jka, Ph.D. for his advice and comments on this thesis as well as to RNDr. Lukáš Hejtmánek, Ph.D. for his assistance with application deployment and server setup. Many thanks also go to OndˇrejTom for his valuable help and advice during application development. -
Managing Data Constraints in Database-Backed Web Applications
Managing data constraints in database-backed web applications Junwen Yang Utsav Sethi Cong Yan University of Chicago, USA University of Chicago, USA University of Washington, USA [email protected] [email protected] [email protected] Alvin Cheung Shan Lu University of California, Berkeley University of Chicago, USA USA [email protected] [email protected] ABSTRACT Database-backed web applications manipulate large amounts of … <input value=‘title’ pattern=‘.+’ title=‘invalid title’/> persistent data, and such applications often contain constraints … that restrict data length, data value, and other data properties. Such constraints are critical in ensuring the reliability and usability of Field Type Null Default … these applications. In this paper, we present a comprehensive study on where data constraints are expressed, what they are about, how title varchar(30) NO NULL … often they evolve, and how their violations are handled. The re- sults show that developers struggle with maintaining consistent … data constraints and checking them across different components validates_length_of : title, maximum: 60, message: ‘title is too long’ Mysql::Error and versions of their web applications, leading to various prob- … lems. Guided by our study, we developed checking tools and API enhancements that can automatically detect such problems and Figure 1: Crossstack data constraints improve the quality of such applications. 1 INTRODUCTION 60 characters)” error; finally, she tried a title a little shorter than60 1.1 Motivation characters, but the web page then crashed with all the filled content Constraints are often associated with data used in software. These lost with some unreadable database error displayed. range from describing the expected length, value, uniqueness, and It turned out that different constraints were specified for the other properties of the stored data. -
AN INTRODUCTION by Enrique Canals / @Ecanals ENRIQUE CANALS
THE BEAUTY OF CSS PRE-PROCESSORS: AN INTRODUCTION by Enrique Canals / @ecanals ENRIQUE CANALS Software Developer @ The Hybrid Group Currently working with Sphero, creating cool things for connecting robots to the internet Worked on several interesting web projects with Pebble Current maintainer of the TextMate SCSS Bundle for syntax highlighting with support for Atom and Sublime @ecanals | www.enriquecanals.com WHAT WE'RE GOING TO COVER IN THIS SESSION PART 1 CSS basics and shortcomings What are CSS pre-processors How pre-processors work and don't work PART 2 Which one do I use? (Sass, Less, Stylus) Workflow Integration Using pre-processors in WordPress theme development PART 1 CSS BASICS AND SHORTCOMINGS BASIC CSS SYNTAX This is the CSS you're used to. html, body { width: 100%; height: 100%; overflow: hidden; } body { background-color: #fff; color: #000; line-height: 1; position: relative; } Simple enough. NOW SOMETHING A LITTLE MORE COMPLEX: .reveal.slide section, .reveal.linear section { -webkit-backface-visibility: hidden; backface-visibility: hidden; } .reveal .slides > section[data-transition=slide].past, .reveal.slide .slides > section:not([data-transition] -webkit-transform: translate(-150%, 0); -ms-transform: translate(-150%, 0); transform: translate(-150%, 0); } .reveal .slides > section[data-transition=slide].future, .reveal.slide .slides > section:not([data-transition] -webkit-transform: translate(150%, 0); -ms-transform: translate(150%, 0); transform: translate(150%, 0); } .reveal .slides > section > section[data-transition=slide].past, .reveal.slide .slides > section > section -webkit-transform: translate(0, -150%); -ms-transform: translate(0, -150%); transform: translate(0, -150%); } .reveal .slides > section > section[data-transition=slide].future, .reveal.slide .slides > section > section -webkit-transform: translate(0, 150%); -ms-transform: translate(0, 150%); transform: translate(0, 150%); } You can see how this get's ugly fast. -
Exploring the Visualization of Schemas for Aggregate-Oriented Nosql Databases?
Exploring the Visualization of Schemas for Aggregate-Oriented NoSQL Databases? Alberto Hernández Chillón, Severino Feliciano Morales, Diego Sevilla Ruiz, and Jesús García Molina Faculty of Computer Science, University of Murcia Campus Espinardo, Murcia, Spain {alberto.hernandez1,severino.feliciano,dsevilla,jmolina}@um.es Abstract. The lack of an explicit data schema (schemaless) is one of the most attractive NoSQL database features for developers. Being schema- less, these databases provide a greater flexibility, as data with different structure can be stored for the same entity type, which in turn eases data evolution. This flexibility, however, should not be obtained at the expense of losing the benefits provided by having schemas: When writ- ing code that deals with NoSQL databases, developers need to keep in mind at any moment some kind of schema. Also, database tools usu- ally require the knowledge of a schema to implement their functionality. Several approaches to infer an implicit schema from NoSQL data have been proposed recently, and some utilities that take advantage of inferred schemas are emerging. In this article we focus on the requisites for the vi- sualization of schemas for aggregate-oriented NoSQL Databases. Schema diagrams have proven useful in designing and understanding databases. Plenty of tools are available to visualize relational schemas, but the vi- sualization of NoSQL schemas (and the variation that they allow) is still in an immature state, and a great R&D effort is required to achieve tools with the desired capabilities. Here, we study the main challenges to be addressed, and propose some visual representations. Moreover, we outline the desired features to be supported by visualization tools. -
SQL: Triggers, Views, Indexes Introduction to Databases Compsci 316 Fall 2014 2 Announcements (Tue., Sep
SQL: Triggers, Views, Indexes Introduction to Databases CompSci 316 Fall 2014 2 Announcements (Tue., Sep. 23) • Homework #1 sample solution posted on Sakai • Homework #2 due next Thursday • Midterm on the following Thursday • Project mixer this Thursday • See my email about format • Email me your “elevator pitch” by Wednesday midnight • Project Milestone #1 due Thursday, Oct. 16 • See project description on what to accomplish by then 3 Announcements (Tue., Sep. 30) • Homework #2 due date extended to Oct. 7 • Midterm in class next Thursday (Oct. 9) • Open-book, open-notes • Same format as sample midterm (from last year) • Already posted on Sakai • Solution to be posted later this week 4 “Active” data • Constraint enforcement: When an operation violates a constraint, abort the operation or try to “fix” data • Example: enforcing referential integrity constraints • Generalize to arbitrary constraints? • Data monitoring: When something happens to the data, automatically execute some action • Example: When price rises above $20 per share, sell • Example: When enrollment is at the limit and more students try to register, email the instructor 5 Triggers • A trigger is an event-condition-action (ECA ) rule • When event occurs, test condition ; if condition is satisfied, execute action • Example: • Event : some user’s popularity is updated • Condition : the user is a member of “Jessica’s Circle,” and pop drops below 0.5 • Action : kick that user out of Jessica’s Circle http://pt.simpsons.wikia.com/wiki/Arquivo:Jessica_lovejoy.jpg 6 Trigger example -
Oracle Nosql Database EE Data Sheet
Oracle NoSQL Database 21.1 Enterprise Edition (EE) Oracle NoSQL Database is a multi-model, multi-region, multi-cloud, active-active KEY BUSINESS BENEFITS database, designed to provide a highly-available, scalable, performant, flexible, High throughput and reliable data management solution to meet today’s most demanding Bounded latency workloads. It can be deployed in on-premise data centers and cloud. It is well- Linear scalability suited for high volume and velocity workloads, like Internet of Things, 360- High availability degree customer view, online contextual advertising, fraud detection, mobile Fast and easy deployment application, user personalization, and online gaming. Developers can use a single Smart topology management application interface to quickly build applications that run in on-premise and Online elastic configuration cloud environments. Multi-region data replication Enterprise grade software Applications send network requests against an Oracle NoSQL data store to and support perform database operations. With multi-region tables, data can be globally distributed and automatically replicated in real-time across different regions. Data can be modeled as fixed-schema tables, documents, key-value pairs, and large objects. Different data models interoperate with each other through a single programming interface. Oracle NoSQL Database is a sharded, shared-nothing system which distributes data uniformly across multiple shards in a NoSQL database cluster, based on the hashed value of the primary keys. An Oracle NoSQL Database data store is a collection of storage nodes, each of which hosts one or more replication nodes. Data is automatically populated across these replication nodes by internal replication mechanisms to ensure high availability and rapid failover in the event of a storage node failure. -
KB SQL Database Administrator Guide a Guide for the Database Administrator of KB SQL
KB_SQL Database Administrator Guide A Guide for the Database Administrator of KB_SQL © 1988-2019 by Knowledge Based Systems, Inc. All rights reserved. Printed in the United States of America. No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from KB Systems, Inc., as governed by United States and international copyright laws. The information contained in this document is subject to change without notice. KB Systems, Inc., does not warrant that this document is free of errors. If you find any problems in the documentation, please report them to us in writing. Knowledge Based Systems, Inc. 43053 Midvale Court Ashburn, Virginia 20147 KB_SQL is a registered trademark of Knowledge Based Systems, Inc. MUMPS is a registered trademark of the Massachusetts General Hospital. All other trademarks or registered trademarks are properties of their respective companies. Table of Contents Preface ................................................. vii Purpose ............................................. vii Audience ............................................ vii Conventions Used in this Manual ...................................................................... viii The Organization of this Manual ......................... ... x Additional Documentation .............................. xii Chapter 1: An Overview of the KB_SQL User Groups and Menus ............................................................................................................ -
SUGI 23: an Investigation of the Efficiency of SQL DML Operations Performed on an Oracle DBMS Using SAS/Accessr Software
Posters An Investigation of the Efficiency of SQL DML Operations Performed on an ORACLE DBMS using SAS/ACCESS Software Annie Guo, Ischemia Research and Education Foundation, San Francisco, California Abstract Table 1.1: Before Modification Of Final Records Id Entry MedCode Period1 Period2 Indication AG1001 Entry1 AN312 Postop Day1 Routine AG1001 Entry2 AN312 Postop Day1 Routine In an international epidemiological study of 2000 cardiac AG1001 Final AN312 Postop Day1 Non-routine ← To be updated surgery patients, the data of 7000 variables are entered AG1001 Final HC527 Intraop PostCPB Maintenance ← To be deleted AG1002 Entry1 PV946 Intraop PreCPB Non-routine ← To be inserted through a Visual Basic data entry system and stored in 57 AG1002 Entry2 PV946 Intraop PreCPB Non-routine as ‘Final’ large ORACLE tables. A SAS application is developed to Table 1.2: After Modification Of Final Records automatically convert the ORACLE tables to SAS data sets, Id Entry MedCode Period1 Period2 Indication AG1001 Entry1 AN312 Postop Day1 Routine perform a series of intensive data processing, and based AG1001 Entry2 AN312 Postop Day1 Routine AG1001 Final AN312 Postop Day1 Routine ← Updated upon the result of the data processing, dynamically pass AG1002 Entry1 PV946 Intraop PreCPB Non-routine AG1002 Entry2 PV946 Intraop PreCPB Non-routine ORACLE SQL Data Manipulation Language (DML) AG1002 Final PV946 Intraop PreCPB Non-routine ← Inserted commands such as UPDATE, DELETE and INSERT to ORACLE database and modify the data in the 57 tables. A Visual Basic module making use of ORACLE Views, Functions and PL/SQL Procedures has been developed to The modification of ORACLE data using SAS software can access the ORACLE data through ODBC driver, compare be resource-intensive, especially in dealing with large tables the 7000 variables between the 2 entries, and modify the and involving sorting in ORACLE data. -
3 Data Definition Language (DDL)
Database Foundations 6-3 Data Definition Language (DDL) Copyright © 2015, Oracle and/or its affiliates. All rights reserved. Roadmap You are here Data Transaction Introduction to Structured Data Definition Manipulation Control Oracle Query Language Language Language (TCL) Application Language (DDL) (DML) Express (SQL) Restricting Sorting Data Joining Tables Retrieving Data Using Using ORDER Using JOIN Data Using WHERE BY SELECT DFo 6-3 Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 3 Data Definition Language (DDL) Objectives This lesson covers the following objectives: • Identify the steps needed to create database tables • Describe the purpose of the data definition language (DDL) • List the DDL operations needed to build and maintain a database's tables DFo 6-3 Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4 Data Definition Language (DDL) Database Objects Object Description Table Is the basic unit of storage; consists of rows View Logically represents subsets of data from one or more tables Sequence Generates numeric values Index Improves the performance of some queries Synonym Gives an alternative name to an object DFo 6-3 Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 5 Data Definition Language (DDL) Naming Rules for Tables and Columns Table names and column names must: • Begin with a letter • Be 1–30 characters long • Contain only A–Z, a–z, 0–9, _, $, and # • Not duplicate the name of another object owned by the same user • Not be an Oracle server–reserved word DFo 6-3 Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6 Data Definition Language (DDL) CREATE TABLE Statement • To issue a CREATE TABLE statement, you must have: – The CREATE TABLE privilege – A storage area CREATE TABLE [schema.]table (column datatype [DEFAULT expr][, ...]); • Specify in the statement: – Table name – Column name, column data type, column size – Integrity constraints (optional) – Default values (optional) DFo 6-3 Copyright © 2015, Oracle and/or its affiliates. -
Today SQL Views CREATE VIEW Command
Today IT420: Database Management and SQL Views Organization SQL Views (Chapter 7) 1 Kroenke, Database Processing 2 SQL Views CREATE VIEW Command SQL view is a virtual table that is constructed from other CREATE VIEW command: tables or views CREATE VIEW view_name It has no data of its own, but obtains data from tables or AS other views select_statement It only has a definition Use the view: SELECT statements are used to define views In SELECT statements A view definition may not include an ORDER BY clause Sometimes in INSERT statements Views can be used as regular tables in SELECT Sometimes in UPDATE statements statements Sometimes in DELETE statements Kroenke, Database Processing 3 Kroenke, Database Processing 4 1 CREATE VIEW Command Uses for SQL Views CREATE VIEW Security: hide columns and rows command: CREATE VIEW CustomerNameView Display results of computations AS Hide complicated SQL syntax SELECT CustName AS CustomerName Provide a level of isolation between actual FROM CUSTOMER; data and the user’s view of data To use the view: three-tier architecture SELECT * Assign different processing permissions to FROM CustomerNameView ORDER BY CustomerName; different views on same table Kroenke, Database Processing 5 Kroenke, Database Processing 6 Security: hide columns and rows Display results of computations MIDS database, Midshipmen table Faculty (EmpID , LName, FName, Department, AreaCode, LocalPhone) View for faculty – all mids with IT major Create a view to display 2 columns: View for students – all mids, no -
Database Views
DATABASE VIEWS CHAPTER 5 (6/E) CHAPTER 8 (5/E) 1 LECTURE OUTLINE . Database views provide convenient usage • Virtual view realized when query uses that view . Materialized views allow efficient re-use • Must be recalculated or updated when base tables change 2 VIEWS FOR CUSTOMIZATION . Consider database(s) describing university’s activities • Academic institution • Students, professors, classes • Grades, transcripts • Admissions, convocations • Alumni • Corporate institution • Finances, human resources • Board of Governors • Capital assets • Charitable institution • Donors, fundraising activities • Research institution • Granting agencies, industrial/non-profits/academic partners • Grants and contracts, intellectual property, licensing . Each user group provided appropriate “subset” of the data • e.g., some financial/scheduling info relevant to most groups; other info confidential • Underlying data shared, not silo’d. Updates must be seen by all affected users. 3 VIEWS (VIRTUAL TABLES) . Consider again the query SELECT title, year, genre FROM Film WHERE director = 'Steven Spielberg' AND year > 1990; • Returns all matching films currently in the database • If re-run after updates, will give revised table of matches . A view is an unexecuted query that can be run on demand. • Single table derived from other table(s) • A virtual table 4 USING VIEWS IN SQL . CREATE VIEW command • View name and a query to specify the contents of the view CREATE VIEW Big_Earners AS SELECT E.Ssn AS Ssn, E.Lname AS Name, E.Salary AS Salary, M.Lname AS Manager FROM EMPLOYEE E, EMPLOYEE M WHERE E.Super_ssn = M.Ssn and E.Salary > M.Salary; . Queries can use view as if it were a base table. SELECT * FROM Big_Earners WHERE Salary < 100000; .