Market Analysis: Data Science and Data Analytics

Total Page:16

File Type:pdf, Size:1020Kb

Market Analysis: Data Science and Data Analytics Market Analysis: Data Science and Data Analytics Prepared for Graceland University September 2018 In the following report, Hanover assesses demand for bachelor’s and master’s degree programs in data science, specifically highlighting demand trends for programs in the region including Iowa and Missouri. The report includes an examination of student and labor market demand, and an analysis of potential competitor programs. www.hanoverresearch.com Table of Contents Market Analysis: Data Science and Data Analytics Executive Summary Page 3 Degree Completions Analysis Page 5 Labor Market Analysis Page 6 Real-Time Job Postings Analysis Page 7 Competitor Analysis Page 8 Program Analysis Page 9 Research Centers & Funding Page 11 Program Benchmarking Page 13 2 Executive Summary Market Analysis: Data Science and Data Analytics Recommendations Regional Benchmark Analysis – Bachelor’s Based on an analysis of degree completions, and market competitors: Comparison of bachelor’s degree completions related to data science and relevant labor market to all completions and all occupations in the Plains Region Graceland University should continue exploring offering a data science program. Student demand for data science programs has been increasing 2024 rapidly at both the bachelor’s and master’s levels, and relevant occupations - Emerging Program High Growth Program are expected to grow faster than average. 2014 8.4%, 17.3% Before launching new data science programs, Graceland should develop a Rate, strategy to differentiate its offerings from an increasingly crowded 6.3% market. To stand out, Graceland could consider emphasizing unique features Regional Average, and specialization tracks when advertising or recruiting. Growth All Occupations Low Growth Program Established Program Key Findings and Program Demand Forecast Market For bachelor’s and master’s in data science programs in the Plains Region -1.6% Labor Regional Average, All Programs Student demand for bachelor’s and master’s programs in data science-related fields has been growing regionally and nationally. At both award levels, annualized Annualized Degree Completions Growth Rate, 2012-2016 growth rates for data science-related programs are faster than the rates for all academic programs at the same degree levels. Regional Benchmark Analysis – Master’s The market for data science programs is increasingly competitive. At the bachelor’s Comparison of master’s degree completions related to data science and relevant level, several programs closed between 2012 and 2016, which could mean that all labor market to all completions and all occupations in the Plains Region student demand is being met. Meanwhile, approximately 80 new master’s programs 2024 opened in 2017 and 2018, and several more have been announced for 2019. - Emerging Program High Growth Program Graduates of data science programs are likely to find employment, especially at 2014 16.0%, 17.3% consulting and financial firms, and healthcare or insurance companies. Relevant occupations are projected to grow faster than average in the region and the United Rate, 6.3% States. During three months in 2018, over 5,700 relevant jobs were listed in the Regional Average, region, requiring skills such as statistical programming and database management. Growth All Occupations Low Growth Program Established Program Some regional institutions host or participate in data science-related research centers, many of which are publicly funded. Some of these centers are funded by Market -0.1% state grants, others by federal government departments and agencies. Several Labor Regional Average, institutions are affiliated with the Midwest Big Data Hub, which receives funding All Programs from the National Science Foundation. Annualized Degree Completions Growth Rate, 2012-2016 Overview of Related Fields Market Analysis: Data Science and Data Analytics Despite some formal differences between the meaning of “data analytics” and “data science” the terms are often used interchangeably when referring to academic programs – according to the Institute for Advanced Analytics at North Carolina State University, data science is a “close kin” to analytics, and both program types use similar curriculum. In this report, Hanover uses the term “data science” when referring to relevant programs. Data analytics, data science, and information science programs all rely on students having a foundation in computer science. Data analytics focuses on analyzing data once it has already been collected in order to answer business or policy questions. Data analytics programs are most likely to include concentration related to specific industries. Data science focuses on creating data-driven solutions by developing models for data management; these programs may include a greater focus on programming or software engineering than analytics programs. Meanwhile, information science focuses on the application of technology and other analytical tools to improve the usability of data in a variety of professional fields. Data Analytics Data Science Information Science The application of information Uses statistics, mathematics, Creates sophisticated analytical systems and technologies to computer programming, machine models to build new data sets and understand data and improve its learning, and visualization tools to derive new insights from data analyze large quantities of data usability Statistics and Data Driven Information Data Visualization Mathematics Decision-Making Data Engineering Management Presenting data and trends Developing questions for Developing, maintaining, Developing statistical The process of collecting, in a manner that is easy to research and designing and evaluating models to infer trends storing, managing and understand data models to answer database solutions within from data maintaining information these questions organizations Computer Science and Programming Developing and using software to collect, organize, store, model, analyze, display, and interface with data Source: DataFloq, Technopedia, University of Delaware, SimpliLearn 4 Degree Completions Analysis Market Analysis: Data Science and Data Analytics Regional Bachelor’s Completions Volume Analysis of Findings Distribution of bachelor’s degree completions in the region from 2012 to 2016 Student demand for bachelor’s degrees related to data science grew consistently at 2,500 the state, regional, and national levels. 2,000 In Iowa, related bachelor’s degree completions grew at a rate of 12.8 percent, whereas 1,500 completions in all fields decreased by -8.3 percent. Similarly, related completions grew at a rate of 8.4 percent in the region and 9.9 percent nationally, while bachelor’s degree 1,000 completions in all fields decreased by -1.6 percent regionally and increased at a slow rate of 1.7 percent nationally. 500 0 Student demand for master’s degrees related to data science grew at the regional and 2012 2013 2014 2015 2016 national levels, but declined slightly in Iowa. Data Modeling/Warehousing and Database Administration Information Science/Studies Related master’s degree completions grew at a rate of 16.0 percent in the region and Management Sciences and Quantitative Methods, Other 17.4 nationally, faster than the growth rates for all fields in each geographic level (-0.1 Statistics, General percent regionally and 1.0 percent nationally). In Iowa, related master’s degree Computer and Information Sciences, General completions decreased by -1.1 percent, but still performed better then all fields of study in the state, which shrank by -8.9 percent. Regional Master’s Completions Volume Distribution of master’s degree completions in the region from 2012 to 2016 Total Degree Completions Aggregate degree completions by geographic level (2016) 1,000 Level Iowa Plains National 800 Computer and Information Bachelor’s 191 1,249 17,015 600 Sciences Master’s 22 383 9,823 Bachelor’s 51 267 2,313 Statistics 400 Master’s 35 136 3,027 Management Sciences and Bachelor’s 97 97 586 200 Quantitative Methods, Master’s 7 47 1,171 Bachelor’s 6 388 6,982 0 Information Science/Studies 2012 2013 2014 2015 2016 Master’s 0 260 6,338 Data Modeling/Warehousing Bachelor’s 0 0 172 Data Modeling/Warehousing and Database Administration and Database Administration Master’s 0 8 361 Information Science/Studies Total – Bachelor’s 345 2,001 27,068 Management Sciences and Quantitative Methods, Other 5-Year Growth Rate – Bachelor’s 12.8% 8.4% 9.9% Statistics, General Total – Master’s 64 834 20,720 Source: IPEDS Computer and Information Sciences, General 5-Year Growth Rate – Master’s -1.1% 16.0% 17.4% Note: The Plains Region includes Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota. 5 Labor Market Demand Market Analysis: Data Science and Data Analytics Regional Current and Projected Job Availability Analysis of Findings Regional data science-related positions as of 2014 and 2024 (projected) Graduates of a data science program at Graceland are likely to find employment, 30,000 because related jobs are projected to grow faster than average. 25,000 Data science-related occupations are projected to grow at a rate of 21.1 percent in Iowa, much faster than the growth rate for all occupations in the state (8.6 percent). Similarly, the selected occupations are projected to grow at a rate of 20,000 17.3 percent in the region and 15.6 percent nationally, both faster than the growth rate for the region 6.3 percent) and the country (7.4 percent). 15,000 In data science-related occupations, most workers hold at least a bachelor’s
Recommended publications
  • Analytics in Higher Education: Benefits, Barriers, Progress, and Recommendations (Research Report)
    EDUCAUSE CENTER FOR APPLIED RESEARCH Analytics in Higher Education Benefits, Barriers, Progress, and Recommendations EDUCAUSE CENTER FOR APPLIED RESEARCH Analytics in Higher Education: Benefits, Barriers, Progress, and Recommendations Contents Executive Summary 3 Key Findings and Recommendations 4 Introduction 5 Defining Analytics 6 Findings 8 Higher Education’s Progress to Date: Analytics Maturity 20 Conclusions 25 Recommendations 26 Methodology 27 Acknowledgments 29 Author Jacqueline Bichsel, EDUCAUSE Center for Applied Research Citation for this work: Bichsel, Jacqueline. Analytics in Higher Education: Benefits, Barriers, Progress, and Recommendations (Research Report). Louisville, CO: EDUCAUSE Center for Applied Research, August 2012, available from http://www.educause.edu/ecar. Analytics in Higher Education Executive Summary Many colleges and universities have demonstrated that analytics can help significantly advance an institution in such strategic areas as resource allocation, student success, and finance. Higher education leaders hear about these transformations occurring at other institutions and wonder how their institutions can initiate or build upon their own analytics programs. Some question whether they have the resources, infrastruc- ture, processes, or data for analytics. Some wonder whether their institutions are on par with others in their analytics endeavors. It is within that context that this study set out to assess the current state of analytics in higher education, outline the challenges and barriers to analytics, and provide a basis for benchmarking progress in analytics. Higher education institutions, for the most part, are collecting more data than ever before. However, this study provides evidence that most of these data are used to satisfy credentialing or reporting requirements rather than to address strategic ques- tions, and much of the data collected are not used at all.
    [Show full text]
  • Professional Master of Computational Data Analytics
    A Proposal for a Professional Master’s Degree Program in Computational Data Analytics at New Mexico State University Administered by the College of Arts and Sciences, the College of Business, the College of Engineering, and the Graduate School Las Cruces, New Mexico Contact person who can answer specific questions about the program: Dr. Enrico Pontelli Dr. Huiping Cao Dr. Loui Reyes Dean Associate Professor Dean College of Arts & Sciences Dept. Computer Science The Graduate School New Mexico State Univ. New Mexico State Univ. New Mexico State Univ. [email protected] [email protected] [email protected] (575) 646-3500 (575) 646-4600 (575) 646-5745 1 1 EXECUTIVE SUMMARY ................................................................................................................... 1 2 PURPOSE AND MISSION OF THE PROGRAM ................................................................................... 1 2.1 OVERVIEW OF THE PROPOSED PROGRAM ............................................................................................. 1 2.2 PROGRAM DESCRIPTION ................................................................................................................... 2 2.3 ACADEMIC OBJECTIVES ..................................................................................................................... 3 2.4 PROGRAM CURRICULUM ................................................................................................................... 3 2.4.1 CURRICULUM ......................................................................................................................................
    [Show full text]
  • Using Data Analytics to Detect Fraud
    Using Data Analytics to Detect Fraud Gerard M. Zack, CFE, CPA, CIA, CCEP President, Zack, P.C. Introduction to Data Analytics ®2014 Association of Certified Fraud Examiners, Inc. 1 of 16 ®2014 Association of Certified Fraud Examiners, Inc. Course Objectives . How data analytics can be used to detect fraud . Different tools to perform data analytics . How to walk through the full data analytics process . Red flags of fraud that appear in the data . Data analytics tests that can be used to detect fraud . How to analyze non-numeric data, such as text and timelines, for signs of fraud ®2014 Association of Certified Fraud Examiners, Inc. 2 of 16 Introduction to Data Analytics . Data analytics, as it applies to fraud examination, refers to the use of analytics software to identify trends, patterns, anomalies, and exceptions within data. ®2014 Association of Certified Fraud Examiners, Inc. 3 of 16 Introduction to Data Analytics . Especially useful when fraud is hidden in large data volumes and manual checks are insufficient . Can be used reactively or proactively ®2014 Association of Certified Fraud Examiners, Inc. 4 of 16 Introduction to Data Analytics . Effective data analysis requires: • Translating knowledge of organization and common fraud indicators into analytics tests • Effectively using technological tools • Resolving errors in data output due to incorrect logic or scripts • Applying fraud investigation skills to the data analysis results in order to detect potential instances of fraud ®2014 Association of Certified Fraud Examiners, Inc. 5 of 16 Introduction to Data Analytics . Data analysis techniques alone are unlikely to detect fraud; human judgment is needed to decipher results.
    [Show full text]
  • Google Analytics User Guide
    Page | 1 What is Google Analytics? Google Analytics is a cloud-based analytics tool that measures and reports website traffic. It is the most widely used web analytics service on the Internet. Why should we all use it? Google Analytics helps you analyze visitor traffic and paint a complete picture of your audience and their needs. It gives actionable insights into how visitors find and use your site, and how to keep them coming back. In a nutshell, Google Analytics provides information about: • What kind of traffic does your website generate – number of sessions, users and new users • How your users interact with your website & how engaged they are – pages per session, average time spent on the website, bounce rate, how many people click on a specific link, watch a video, time spent on the webpage • What are the most and least interesting pages – landing and exit pages, most and least visited pages • Who visits your website – user`s geo location (i.e. city, state, country), the language they speak, the browser they are using, the screen resolution of their device • What users do once they are on your website – how long do users stay on the website, which page is causing users to leave most often, how many pages on average users view • When users visit your website – date & time of their visits, you can see how the user found you. • Whether visitors came to your website through a search engine (Google, Bing, Yahoo, etc.), social networks (Facebook, Twitter, etc.), a link from another website, or a direct type-in.
    [Show full text]
  • Nine Common Types of Data Mining Techniques Used in Predictive Analytics
    1 Nine Common Types of Data Mining Techniques Used in Predictive Analytics By Laura Patterson, President, VisionEdge Marketing Predictive analytics enable you to develop mathematical models to help better understand the variables driving success. Predictive analytics relies on formulas that compare past examples of success and failure, and then use these formulas to predict future outcomes. Predictive analytics, pattern recognition and classification problems are not new. Long used in the financial services and insurance industries, predictive analytics is about using statistics, data mining and game theory to analyze current and historical facts in order to make predictions about future events. The value of predictive analytics is relatively obvious. The more you understand customer behavior and motivations the more effective your marketing. The more you know why some customers are loyal, how to attract and retain different customer segments, the more you can develop relevant compelling messages and offers. Predicting customer buying and product preferences and habits requires an analytical framework that enables you to discover meaningful patterns and relationships within customer data in order to do better message targeting, drive customer value and loyalty. Predictive models have been used in business to assess the risk or potential associated with a particular set of conditions as a way to guide decision making. Predictive models analyze past performance to assess how likely a customer is to exhibit a specific behavior in the future in order to improve marketing effectiveness. Marketing and sales professionals are beginning to capture and analyze many different types of customer data: attitudinal, behavioral, and 2 transactional related to purchasing and product preferences in order to make predictions about future buying behavior.
    [Show full text]
  • Download=1 (Accessed on 17 September 2020)
    data Review Balancing Plurality and Educational Essence: Higher Education Between Data-Competent Professionals and Data Self-Empowered Citizens Nils Hachmeister * , Katharina Weiß, Juliane Theiß and Reinhold Decker BiCDaS, Bielefeld University, 33501 Bielefeld, Germany; [email protected] (K.W.); [email protected] (J.T.); [email protected] (R.D.) * Correspondence: [email protected] or [email protected]; Tel.: +49-521-106-67599 Abstract: Data are increasingly important in central facets of modern life: academics, professions, and society at large. Educating aspiring minds to meet highest standards in these facets is the mandate of institutions of higher education. This, naturally, includes the preparation for excelling in today’s data-driven world. In recent years, an intensive academic discussion has resulted in the distinction between two different modes of data related education: data science and data literacy education. As a large number of study programs and offers is emerging around the world, data literacy in higher education is a particular focus of this paper. These programs, despite sharing the same name, differ substantially in their educational content, i.e., a high plurality can be observed. This paper explores this plurality, comments on the role it might play and suggests ways it can be dealt with by maintaining a high degree of adaptiveness and plurality while simultaneously establishing a consistent educational “essence”. It identifies a skill set, data self-empowerment, as a potential part of this essence. Data science and literacy education are still experiencing changeability in their Citation: Hachmeister, N.; Weiß, K.; emergence as fields of study, while additionally being stirred up by rapid developments, bringing Theiß, J.; Decker, R.
    [Show full text]
  • Masters Presentation May 2021
    www.upc.edu www.upc.edu Master in Artificial Intelligence (MAI) Master in Informatics Engineering (MEI) Master in Informatics Engineering – Industrial Modality Master in Innovation and Research in Informatics (MIRI) Master in Data Science (MDS) Màster per al Professorat de Secundària, Master in Cybersecurity Erasmus Mundus Master in Big Data Management and Analytics More Master Information [email protected] Daniel Jiménez-González Vice-dean of Postgraduates Studies FIB: graduate curricula www.upc.edu Coordinated by FIB: ● Màster en Enginyeria Informàtica (Spanish/Catalan) → MEI ● (NEW) Màster en Enginyeria Informàtica Modalitat Empresa ● Master in Innovation and Research in Informatics (English) → MIRI ● Master in Data Science (English) → MDS ● Interuniversity Master in Artificial Intelligence (English) → MAI Màster de Formació per al Professorat de Secundària (Català/Castellà) Participate: Master’s degree in Cybersecurity (2020/21 - English) Interuniversity Master in Pure and Applied Logics Interuniversity Master in Atomistic and Multiscale Computational Modelling in Physics, Chemistry and Biochemistry ERASMUS MUNDUS: 3 Master Erasmus Mundus in Big Data Management and Analytics Summary Knowledge Areas – www.upc.edu MAI/MIRI/MEI/MDS Computer Networks, MDS: Distributed Data Science, Systems, Big Data Advanced Security Computing, Analytics Management Algorithms Business Artificial Intelligence Computer Graphics, Supercomputing, Virtual and MEI Parallelism, Augmented Reality MAI Microprocessor Design MIRI 4 www.upc.edu I could
    [Show full text]
  • Dimmwitted: a Study of Main-Memory Statistical Analytics
    DimmWitted: A Study of Main­Memory Statistical Analytics Ce Zhang†‡ Christopher Re´ † †Stanford University ‡University of Wisconsin­Madison {czhang, chrismre}@cs.stanford.edu ABSTRACT these methods are the core algorithm in systems such as ML- We perform the first study of the tradeoff space of access lib, GraphLab, and Google Brain. Our study examines an- methods and replication to support statistical analytics us- alytics on commodity multi-socket, multi-core, non-uniform ing first-order methods executed in the main memory of a memory access (NUMA) machines, which are the de facto Non-Uniform Memory Access (NUMA) machine. Statistical standard machine configuration and thus a natural target for analytics systems differ from conventional SQL-analytics in an in-depth study. Moreover, our experience with several the amount and types of memory incoherence that they can enterprise companies suggests that, after appropriate pre- tolerate. Our goal is to understand tradeoffs in accessing the processing, a large class of enterprise analytics problems fit data in row- or column-order and at what granularity one into the main memory of a single, modern machine. While should share the model and data for a statistical task. We this architecture has been recently studied for traditional study this new tradeoff space and discover that there are SQL-analytics systems [9], it has not been studied for sta- tradeoffs between hardware and statistical efficiency. We tistical analytics systems. argue that our tradeoff study may provide valuable infor- Statistical analytics systems are different from traditional mation for designers of analytics engines: for each system SQL-analytics systems.
    [Show full text]
  • Data Analytics and Decision-Making in Education: Towards the Educational Data Scientist As a Key Actor in Schools and Higher Education Institutions
    1 Data Analytics and Decision-Making in Education: Towards the Educational Data Scientist as a Key Actor in Schools and Higher Education Institutions Tommaso Agasisti Alex J. Bowers Politecnico di Milano School of Management Teachers College, Columbia University [email protected] [email protected] ABSTRACT:1 1990s, school principals, teachers, parents, stakeholders In this chapter, we outline the importance of data usage for and policy-makers started looking at quantitative data as improving policy-making (at the system level), an indispensable source for making decisions, formulating management of educational institutions and pedagogical diagnoses about strengths and weaknesses of institutions, approaches in the classroom. We illustrate how traditional and assessing the effects of initiatives and policies, etc. data analyses are becoming gradually substituted by more (Bowers, 2008; Mandinach, Honey, Light, & Brunner, sophisticated forms of analytics, and we provide a 2008; Wayman, 2005; Wayman, Stringfield, & classification for these recent movements (in particular Yakimowski, 2004). The diffusion of organizations and learning analytics, academic analytics and educational data initiatives such as Education for the Future mining). After having illustrated some examples of recent (http://eff.csuchico.edu) in the USA, or the DELECA – applications, we warn against potential risks of inadequate Developing Leadership Capacity for data-informed school analytics in education, and list a number of barriers that improvement project (http://www.deleca.org) in Europe, impede the widespread application of better data use. As give testimony to a growing attention to the clever, implications, we call for a development of a more robust intensive and informed use of data for improving schools’ professional role of data scientists applied to education, activities and results.
    [Show full text]
  • Data Mining and Big Data Analytics (2 Credits)
    Course: Data mining and Big Data analytics (2 credits) Instructors: Fosca Giannotti and Dino Pedreschi Learning goals The course provides an introduction to data mining and knowledge discovery from data, i.e., the analytical process of extracting useful information from large raw data generated and collected by various ICTs. The key data mining methods of clustering, classification and pattern mining are illustrated, together with practical tools for their execution. Next, we focus on Big Data, the digital traces of human activities at societal scale, which provide a powerful social microscope that together with social mining – the methods for discovering knowledge from these data – can help us understand and forecast many complex socio-economic phenomena. The key methods for Big Data sensing and acquisition are discussed, together with basics of social media mining and sentiment analysis, mobility data mining, social network mining, retail market data mining, and sport data mining. We conclude with an introduction to big data visualization. Syllabus 1. Data mining and the knowledge discovery process. Overview of data mining and machine learning techniques. Exemplar case studies in clustering, classification and pattern mining. 05.10.2015 (Dino & Fosca) 2. Data. Data types and formats. Exploratory data analysis and data understanding. Visual data exploration with KNIME. Data preparation. 06.10.2015 (Dino) 3. Clustering. Taxonomy of clustering concepts: distance-based (separation, centroids, contiguity), density-based, partitional vs. hierarchical. Methods for centroid-based clustering (k-means), hierarchical clustering (single, complete and average linkage), density-based clustering (DBSCAN). Practical clustering with KNIME. 07.10.2015 (Dino) 4. Classification and prediction models. Model learning and model validation.
    [Show full text]
  • Inspired to Teach: PERSPECTIVES from NEW FACULTY BRYANT UNIVERSITY MISSION
    Inspired to Teach: PERSPECTIVES FROM NEW FACULTY BRYANT UNIVERSITY MISSION Educate and inspire students to discover their passion and become innovative leaders with character around the world. At Bryant, our dedication to student learning is at the heart of our mission. We are proud to be known for our strong commitment to undergraduate teaching and our continued investments in exciting approaches to education. In particular, over the last two years, we’ve hired 29 new faculty whose credentials and passion for teaching are second to none. This next generation of Bryant academics are accomplished scholars who have worked and studied at top institutions such as Yale, Notre Dame, Penn, Auburn, Duke, the U.S. Military Academy at West Point, U.C. Berkeley, and the London School of Economics. They’re energized by the opportunity to contribute to Bryant’s mission. Individually and collectively, they are the future of Bryant. We are proud to introduce you to this group of talented scholars, teachers, and leaders. Glenn M. Sulmasy Provost and Chief Academic Officer 2 RENOWNED AUTHORITIES Richard Gorvett, FCAS, CERA, James Shanahan, Ph.D. MAAA, ARM, FRM, Ph.D. Jeanne & John Rowe Chair of Mathematics Professor of Data Science, Department and Professor Associate Professor of of Mathematics Information Systems and Analytics, and Executive Director BEFORE BRYANT: Staff Actuary, of the Data Science Initiative Casualty Actuarial Society (CAS), Arlington, VA, where he was also a BEFORE BRYANT: Founding faculty member of The Automated Vehicles Task member
    [Show full text]
  • Evaluating Business Intelligence / Business Analytics Software for Use in the Information Systems Curriculum
    Information Systems Education Journal (ISEDJ) 13 (1) ISSN: 1545-679X January 2015 Evaluating Business Intelligence / Business Analytics Software for Use in the Information Systems Curriculum Gary Alan Davis [email protected] Charles R. Woratschek [email protected] Computer and Information Systems Robert Morris University Moon Township, PA 15108 USA Abstract Business Intelligence (BI) and Business Analytics (BA) Software has been included in many Information Systems (IS) curricula. This study surveyed current and past undergraduate and graduate students to evaluate various BI/BA tools. Specifically, this study compared several software tools from two of the major software providers in the BI/BA field. The participants in the study evaluated each software tool according to three key criteria: 1) functionality, 2) ease of use, and 3) learning effectiveness. The “learning effectiveness” criterion was used to determine which BI/BA tools provided the most effective learning of BI/BA concepts in the IS classroom. The three criteria were used to develop recommendations for including specific BI/BA software tools in the IS curriculum. Based on the findings of the study, the authors recommend that colleges and universities consider the use of the IBM-Cognos suite of tools as a viable means for teaching BI/BA concepts in their Information Systems curricula. The results of the study are relevant to any college or university that currently includes (or is considering the inclusion of) Business Intelligence / Business Analytics concepts in its Information Systems curriculum. Keywords: Business Intelligence, Business Analytics, Software Evaluation, Information Systems Curriculum 1. INTRODUCTION students who are attending/have attended BI/BA-related courses.
    [Show full text]