J. Appl. Prob. Spec. Vol. 51A, 123–137 (2014) © Applied Probability Trust 2014 CELEBRATING 50 YEARS OF THE APPLIED PROBABILITY TRUST Edited by S. ASMUSSEN, P.JAGERS, I. MOLCHANOV and L. C. G. ROGERS Part 4. Random graphs and particle systems THE PROBABILITY THAT A RANDOM MULTIGRAPH IS SIMPLE. II SVANTE JANSON, Uppsala University Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden. Email address:
[email protected] APPLIED PROBABILITY TRUST DECEMBER 2014 Downloaded from https://www.cambridge.org/core. IP address: 170.106.34.90, on 01 Oct 2021 at 02:14:20, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1239/jap/1417528471 THE PROBABILITY THAT A RANDOM MULTIGRAPH IS SIMPLE. II BY SVANTE JANSON Abstract ∗ Consider a random multigraph G with given vertex degrees d1,...,dn, constructed by the configuration model. We give a new proof of the fact that, asymptotically for a 1 →∞ sequence of such multigraphs with the number of edges 2 i di , the probability 2 = that the multigraph is simple stays away from 0 if and only if i di O( i di ). The new proof uses the method of moments, which makes it possible to use it in some applications concerning convergence in distribution. Corresponding results for bipartite graphs are included. Keywords: Configuration model; random multigraph; random bipartite graph 2010 Mathematics Subject Classification: Primary 05C80; 05C30; 60C05 1. Introduction n [ ]:={ } Let G(n, (di)1) be the random (simple) graph with vertex set n 1,...,n and vertex degrees d1,...,dn, uniformly chosen among all such graphs.