Frascati 17/12/2015 Javier Redondo Universidad De Zaragoza (Spain) Max Planck Institute Für Physik Overview
Total Page:16
File Type:pdf, Size:1020Kb
Axions, Astrophysics and Dark matter Frascati 17/12/2015 Javier Redondo Universidad de Zaragoza (Spain) Max Planck Institute für Physik Overview - Strong CP problem - Axions - Axions and stars - Axion Dark matter - Dark matter experiments Parity and Time reversal in particle physics (electroweak interactions) P-violation (Wu 56) T-violation (CPLEAR 90’s) R(K¯ 0 K0) R(K0 K¯ 0) ! − ! R(K¯ 0 K0)+R(K0 K¯ 0) 60% ! ! 40% ... but not in the strong interactions many theories based on SU(3)c (QCD) 1 ↵ = G Gµ⌫ + iq¯γµD q qmq¯ + s ✓G Gµ⌫ LQCD −4 µ⌫a a µ − 8⇡ µ⌫a a q X e P,T conserving P,T violating we tend to forget this ↵s µ⌫ ✓Gµ⌫aGa induces P and T (CP) violation ✓ 8⇡ / e ✓ ( ⇡, ⇡) infinitely versions of QCD... all are P,T violating 2 − Neutron EDM 15 Most important P, T violating observable dn ✓ (10− )e cm ⇠ ⇥ O ✓ (1) ⇠ O EDM violates P,T The theta angle of the strong interactions - The value of ✓ controls P,T violation in QCD ✓ ⇡ ⇡ − 0 n n n n¯ n¯ n¯ 10 Measured today ✓ < 10− | | (strong CP problem) Roberto Peccei and Helen Quinn 77 QCD vacuum energy minimised at theta = 0 - ... if ✓ ( t, x ) is dynamical field, relaxes to its minimum Energy generated by QCD! ✓ ⇡ ⇡ − 0 n n¯ 10 Measured today ✓ < 10− | | (strong CP problem) ain’t you forgetting something? P. Higgs and a new particle is born ... - if ✓ ( t, x ) is dynamical field Energy generated by QCD! ✓ ⇡ ⇡ − 0 Field Excitations around the vacuum are particles clears the strong CP problem it’s a higgslet! like my favorite soap S. Weinberg F. Wiczek and a new particle is born ... the axion - if ✓ ( t, x ) is dynamical field Energy generated by QCD! ✓ ⇡ ⇡ − 0 Field Excitations around the vacuum are particles clears the strong CP problem it’s a higgslet! like my favorite soap and a new scale sets the game, fa - kinetic term for ✓ requires a new scale Energy generated by QCD! ✓ = a/fa ⇡ ⇡ − 0 ↵ 1 = s G Gµ⌫ ✓ + (@ ✓)(@µ✓)f 2 L✓ 8⇡ µ⌫a a 2 µ a e ↵s µ⌫ a 1 µ ✓ = Gµ⌫aGa + (@µa)(@ a) L 8⇡ fa 2 e Axion couplings at low energy - From ✓ -term, axion mixes with eta’ and the rest of mesons ↵s µ⌫ a 1 µ ✓ = Gµ⌫aGa + (@µa)(@ a) L 8⇡ fa 2 e a ⌘0 1 fa Axion couplings at low energy Mass 9 f⇡ 10 GeV ma m⇡ 6 meV ' fa ' fa hadrons, Photons 1 1 a a fa fa Leptons (in some models) 1 a fa The lighter the more weakly interacting Axion Landscape f v fa vEW a EW ⇠ Invisible models PQWW models Reactors Had. dec Simple model KSVZ - Peccei-Quinn symmetry, color anomalous, spontaneously broken at fa = + iQDQ¯ (yQ¯ Q Φ +h.c) λ Φ 4 + µ2 Φ 2 L LSM − L R − | | | | i a(x) Φ(x)=⇢(x)e fa a f ~ 1 2 ↵s a - At energies below f a (SSB) (@a) + GG L 2 2 8⇡ fa 0 e - At energies below ⇤ QCD , a ⌘ 0 ⇡ ⌘ ... mixing ~GeV − − − − 9 m⇡f⇡ 10 GeV axion mass ma 6meV ' fa ⇠ fa ¯ µ a ↵ µ⌫ a couplings a,I = cN,aNγ γ5N + caγ Fµ⌫ F + ... L fa 2⇡ fa XN nucleons ... photons ... e mesons ... ENERGY DFSZ - Two Higgs, one new scalar fa λ 2 2 2 2 Dq¯ H q + Uq¯ H˜ u + ... Φ v + λH†H Φ L 2 L d R L u R − 4 | | − d u axion ✓ ✓ + cos2 ✓ +sin2 ✓ ⇠ Φ d u a f ~ 1 2 ↵s a µ @µa - Below f a (@a) + GG Ng + Cf f¯γ γ5f L 2 2 8⇡ fa fa Xf e 0 - At energies below ⇤ QCD , a ⌘ 0 ⇡ ⌘ ... mixing ~GeV − − − − 9 m⇡f⇡ 10 GeV axion mass ma 6meV ' fa ⇠ fa ¯ µ a ↵ µ⌫ a couplings a,I = cN,aNγ γ5N + caγ Fµ⌫ F + ... L fa 2⇡ fa XN nucleons ... photons ... e mesons ... ENERGY Axion Couplings and some models 2 photon proton neutron electron µ⌫ ↵s µ⌫ ↵Caγ a Fµ⌫ F a a a ✓Gµ⌫ G +m.d. + Capmp [ip¯γ5p]+Canmn [in¯γ5n]+Caeme [ie¯γ5e]+... 8⇡ ! 2⇡ fa 4 fa fa fa e e p n e a a a p n e md mu E 2 4md + mu Cap [Cau ]∆u +[Cad ]∆d Caγ ' − mu + md − mu + md ' N − 3 md + mu md mu Can [Cau ]∆d +[Cad ]∆u ' − mu + md − mu + md C =0 KSVZ a(u,d,e) Caγ 1.92 (-0.5,-0.38) (0.1,-0.04) ~ 0 ' 1 C = sin2 β au 3 8 DFSZ1 1 Caγ 1.92 C = cos2 β ... ... ... a(d,e) 3 ' 3 − 1 2 Ca(u,e) = sin β 2 3 DFSZ2 1 Caγ 1.92 ... ... ... C = cos2 β ' 3 − ad 3 Axion Couplings and some models 2 photon proton neutron electron µ⌫ ↵s µ⌫ ↵Caγ a Fµ⌫ F a a a ✓Gµ⌫ G +m.d. + Capmp [ip¯γ5p]+Canmn [in¯γ5n]+Caeme [ie¯γ5e]+... 8⇡ ! 2⇡ fa 4 fa fa fa e e p n e a a a p n e md mu 0.4 E 2 4md + mu Cap [Cau ]∆u +[Cad ]∆d C ' − mu + md −DFSZ2mu + md DFSZ aγ ' N − 3 m + m d u md 0.2 mu Can [Cau ]∆d +[Cad DFSZ1 ]∆u ' − mu + md − mu + md Cap 0.0 KSVZ Can C =0 -0.2 KSVZ a(u,d,e) Caγ 1.92 (-0.5,-0.38) (0.1,-0.04) ~ 0 ' Cae 1 -0.4 C = sin2 β KSVZ au 3 8 DFSZ1 1 Caγ 1.92 DFSZ C = cos2 β ...-0.6 ... ... a(d,e) 3 ' 3 − 1 2 0.0 0.2 0.4 0.6 0.8 1.0 Ca(u,e) = sin β 2 3 DFSZ2 1 Caγ 1.92 ... ... 2 ... C = cos2 β ' 3 − cos β ad 3 Bounds and hints from astrophysics - Axions emitted from stellar cores accelerate stellar evolution - Too much cooling is strongly excluded (obs. vs. simulations) - Some systems improve with additional axion cooling! Tip of the Red Giant branch (M5) White dwarf luminosity function HB stars in globular clusters Neutron Star CAS A Tip of the Red Giant branch (M5) Increase He core until 3alpha ignition (T~8.6 KeV) Globular ClusterM5 s s H-burning ne He th ig Br COLOR Axion emission cools down core, delays ignition ,T , Mcore " H " L " Brighter Helium flash! Strong constraint, small hint! White dwarf luminosity function C,O ⌫, ⌫¯ γ - White dwarfs are death stars (sustain no fusion) - final phase of intermediate mass stars which cannot fuse C and O (Sun...) - Cool by 1) neutrino emission and 2) by photon surface emission White dwarf luminosity function dN k WD = Vol d d /dt L L White dwarf luminosity function dN k WD = with axion-electron Vol d d /dt + d /dt bremsstrahlung L L La increase coupling Strong constraint, small hint! Core collapse SN Iron Core collapse when electron degeneracy pressure The gravitational energy cannot support its grav. pull of the core is mainly to be radiated away in neutrinos core 1.4 E =3 1053 erg M ⇠ M ⇥ ... Si 10 1 ⌫g,= 10− GeV− ⌫¯ Fe n,p Neutrino burst -Neutrinos TRAPPED -Emitted from neutrino-sphere T~MeV - ~10 sec to cool it down n,p - Axions (more weakly interacting) - Emitted from the bulk T~tens MeV - can cool much faster! N + N N + N + a Reduction of nu burst ! a p, n p, n ⇡ first approx. (pi pole too hard...) 10 1 g = 10− GeV− Cool the PNS axions are axion production eficiently reabsorbed not significant reduce the inside the SN neutrino burst! N + N N + N + a Reduction of nu burst ! a p, n axion emission is suppressed due to high density effects ! 10 1 g = 10− GeV− SN1987A - Cooling ~ 10 s - Exotics, Eloss/mass and time 19 ✏ . 10 erg/gs - Axion emission . T 4 ✏ g2 1.6 1037erg/gs a ⇠ ap ⇥ 30MeV ✓ ◆ - Constraint . 9 g 8 10− ap . ⇥ 10 1 g = 10− GeV− - Axions saturating the bound take ~50% Ecore Diffuse Supernova Axion Background Cassiopeia A: neutron star cooling ⌫¯ - Cooling measured by Chandra, ~4% in ten years! ⌫ n 3 3 - Evidence of ⌫⌫¯ emission in n Cooper pair formation P2 P2 n a n - Factor of ~2 extra cooling required, axions? 3 n P2 Hints, constraints and models ... any preference? me 13 Tip of the Red Giant branch (M5) gae = Cae =(2 1.5) 10− fa ± ⇥ me 13 White dwarf luminosity function gae = Cae =(1.4 1.4) 10− fa ± ⇥ mn 10 Cassiopeia A: neutron star cooling gan = Can =(3.8 3) 10− fa ± ⇥ mp 10 SN1987A gap = Cap < 0.8 10− fa ⇥ KSVZ (no RG, no WD, no pref.) DFSZ1 DFSZ2 χ2 Preliminary β m β 2 u 2 m cos d cos Preliminary Preliminary 9 9 9 fa/10 GeV fa/10 GeV fa/10 GeV Hints, constraints and models ... any preference? KSVZ (no RG, no WD, no pref.) 0.4 DFSZ DFSZ2 0.2 2 DFSZ1 χ KSVZ Cap 0.0 Can mu -0.2 Cae md -0.4 KSVZ DFSZ -0.6 Preliminary 0.0 0.2 0.4 0.6 0.8 1.0 cos2 β 9 fa/10 GeV DFSZ (no RG, no WD, 2 pref.) DFSZ1 DFSZ2 Preliminary β β β 2 2 2 cos cos cos Preliminary Preliminary 9 9 9 fa/10 GeV fa/10 GeV fa/10 GeV Axion Landscape Reactors Had. dec Axion Landscape Excluded Astro-hints? Reactors Had. dec Detecting Solar Axions : Helioscopes Axions from the Sun Hadronic axions (KSVZ) C ↵ F F µ⌫ γ µ⌫ a 2⇡fa 4 e gaγ Non hadronic (DFSZ, e-coupling!) 13 gae = 10− Ceme 12 1 ie¯γ5ea gaγ = 10− GeV− fa typical of meV mass axions gae Helioscopes The Sun is a copious emitter of axions! convert into X-rays focus detect Conversion probability 2g B ! 2 m2L P (a γ)= aγ T sin2 a 1 $ m2 4! gaγ a ⇠ fa ✓ ◆ 2✓ ◆ 20 B L P (a γ) 10− $ ⇠ 3T20 m ✓ ◆ CAST Helioscope hadronic axions CAST (LHC dipole 9.3 m, 9T) PhaseII PhaseI - 1~2 h tracking/day (sunset,dawn) non-hadronic axions - 3 Detectors (2 bores) CCD, Micromegas - X-ray optics PhaseI Next generation (proposed) IAXO Boost parameters to the maximum Large toroidal 8-coil magnet L = ~20 m 8 bores: 600 mm diameter each 8 x-ray optics + 8 detection systems -NGAG paper JCAP 1106:013,2011 Rotating platform with services -Conceptual design report IAXO 2014 JINST 9 T05002 -LOI submitted to CERN, TDR in preparation -Possibility of Direct Axion DM experiments (cavities) Physics reach (preliminary) Hadronic axions (KSVZ) Non hadronic (DFSZ, e-coupling!) fa[GeV] fa[GeV] 9 8 7 10 10 10 9 8 7 -10 -10 10 10 10 10 10 10-10 10-10 IAXO IAXO ] ae 1 Conservative g Conservative − ⇥ - - ] 10 11 10 11 1 10-11 10-11 − GeV GeV 10 10 − Not so P2 − KSVZ P1 KSVZ [10 [10 γ γ -12 DFSZ1 -12 -12 -12 a 10 10 a DFSZ1 10 10 g g DFSZ2 q DFSZ2 Not so SN1987A -13 -13 -13 -13 10 10 10 10 10-3 10-2 10-1 1 10-3 10-2 10-1 1 ma[eV] ma[eV] Possibility to unveal the hints! Axion Landscape Reactors Had.