The Pleasing Fungus Beetles of Illinois (Coleoptera: Erotylidae) Part II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nomenclatural Notes for the Erotylinae (Coleoptera: Erotylidae)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 4-29-2020 Nomenclatural notes for the Erotylinae (Coleoptera: Erotylidae) Paul E. Skelley Florida State Collection of Arthropods, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Skelley, Paul E., "Nomenclatural notes for the Erotylinae (Coleoptera: Erotylidae)" (2020). Insecta Mundi. 1265. https://digitalcommons.unl.edu/insectamundi/1265 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. May 29 2020 INSECTA 35 urn:lsid:zoobank. A Journal of World Insect Systematics org:pub:41CE7E99-A319-4A28- UNDI M B803-39470C169422 0767 Nomenclatural notes for the Erotylinae (Coleoptera: Erotylidae) Paul E. Skelley Florida State Collection of Arthropods Florida Department of Agriculture and Consumer Services 1911 SW 34th Street Gainesville, FL 32608, USA Date of issue: May 29, 2020 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Paul E. Skelley Nomenclatural notes for the Erotylinae (Coleoptera: Erotylidae) Insecta Mundi 0767: 1–35 ZooBank Registered: urn:lsid:zoobank.org:pub:41CE7E99-A319-4A28-B803-39470C169422 Published in 2020 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non- marine arthropod. -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
From the Mascarene Islands
58 New species of Cryptophagidae and Erotylidae (Coleoptera) from the Mascarene Islands New species of Cryptophagidae and Erotylidae (Coleoptera) from the Mascarene Islands GEORGY YU. LYUBARSKY Zoological Museum of Moscow State University, Bolshaya Nikitskaya ulica 6, 125009, Moscow, Russia; e-mail: [email protected] LYUBARSKI G.Yu. 2013. NEW SPECIES OF CRYPTOPHAGIDAE AND EROTYLIDAE (COLEOPTERA) FROM THE MASCARENE ISLANDS. – Latvijas Entomologs 52: 58-67. Abstract: А new species Micrambe reunionensis sp. nov. (Cryptophagidae) is described from the island of La Réunion. Cryptophilus integer (HEER, 1841) and Leucohimatium arundinaceum (FORSKAL, 1775) (Erotylidae) proved new for the Mascarene faunal district. Key words: Cryptophagidae, Erotylidae, Cryptophilus, Leucohimatium, Micrambe, La Réunion, Mascarene Archipelago. Mascarene Islands: natural conditions many recent extinctions. Volcanic islands with higher elevations The Mascarenes is an island group are relatively young. The most /ancient lavas in the south-western Indian Ocean, 700 from La Réunion are dated at 2.1 million km east of Madagascar. Commonly, it is years ago. La Réunion has been suitable subdivided into continental and oceanic for life since about 2–3 million years ago islands, and oceanic islands are further (Thébaud et al. 2009). La Réunion possesses divided into volcanic islands and coral one active and three extinct volcanoes. The islands. The archipelago includes three high island is dissected by huge caldera-like volcanic islands (La Réunion, Mauritius and valleys (cirques) created by heavy rainfall Rodrigues). Mauritius was the former home of erosion, with very deep gorges culminating dodo, the universal symbol of human-caused in narrow outlets to the sea. species extinction on the islands. -
The Distribution and Evolution of Exocrine Compound
This article was downloaded by: [79.238.118.44] On: 17 July 2013, At: 23:24 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Annales de la Société entomologique de France (N.S.): International Journal of Entomology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tase20 The distribution and evolution of exocrine compound glands in Erotylinae (Insecta: Coleoptera: Erotylidae) Kai Drilling a b , Konrad Dettner a & Klaus-Dieter Klass b a Department for Animal Ecology II , University of Bayreuth, Universitätsstraße 30 , 95440 , Bayreuth , Germany b Senckenberg Natural History Collections Dresden , Museum of Zoology , Königsbrücker Landstraße 159, 01109 , Dresden , Germany Published online: 24 May 2013. To cite this article: Kai Drilling , Konrad Dettner & Klaus-Dieter Klass (2013) The distribution and evolution of exocrine compound glands in Erotylinae (Insecta: Coleoptera: Erotylidae), Annales de la Société entomologique de France (N.S.): International Journal of Entomology, 49:1, 36-52, DOI: 10.1080/00379271.2013.763458 To link to this article: http://dx.doi.org/10.1080/00379271.2013.763458 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. -
A Comparison of Three Trapping Methods Used to Survey Forest-Dwelling Coleoptera
Eur. J. Entomol. 103: 397–407, 2006 ISSN 1210-5759 A comparison of three trapping methods used to survey forest-dwelling Coleoptera ESKO HYVÄRINEN, JARI KOUKI and PETRI MARTIKAINEN Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FIN – 80101 Joensuu, Finland; e-mail: [email protected] Keywords. Abundance distribution, beetles, biodiversity inventories, boreal forest, Coleoptera, interception traps, pitfall traps, sampling, species richness, window traps Abstract. Sampling of insect communities is very challenging and for reliable interpretation of results the effects of different sam- pling protocols and data processing on the results need to be fully understood. We compared three different commonly used methods for sampling forest beetles, freely hanging flight-intercept (window) traps (FWT), flight-intercept traps attached to trunks (TWT) and pitfall traps placed in the ground (PFT), in Scots pine dominated boreal forests in eastern Finland. Using altogether 960 traps, forming 576 sub-samples, at 24 study sites, 59760 beetles belonging to 814 species were collected over a period of a month. All of the material was identified to species, with the exception of a few species pairs, to obtain representative data for analyses. Four partly overlapping groups were used in the analyses: (1) all, (2) saproxylic, (3) rare and (4) red-listed species. In terms of the number of species collected TWTs were the most effective for all species groups and the rarer species the species group composed of (groups 1-2-3-4) the larger were the differences between the trap types. In particular, the TWTs caught most red-listed species. However, when sample sizes were standardized FWTs and TWTs caught similar number of species of all species groups. -
Coleoptera: Erotylidae)
Org Divers Evol (2010) 10:205–214 DOI 10.1007/s13127-010-0008-0 ORIGINAL ARTICLE Morphology of the pronotal compound glands in Tritoma bipustulata (Coleoptera: Erotylidae) Kai Drilling & Konrad Dettner & Klaus-Dieter Klass Received: 4 March 2009 /Accepted: 26 November 2009 /Published online: 16 March 2010 # Gesellschaft für Biologische Systematik 2010 Abstract Members of the cucujiform family Erotylidae er Endoplasmatic reticulum possess a whole arsenal of compound integumentary fs Filamentous structure forming core of lateral glands. Structural details of the glands of the pronotum of appendix Tritoma bipustulata and Triplax scutellaris are provided for gd Glandular ductule of gland unit the first time. These glands, which open in the posterior and gdc Constriction of glandular ductule anterior pronotal corners, bear, upon a long, usually gdcl Cell enclosing glandular ductule (secretory cell) unbranched excretory duct, numerous identical gland units, la Lateral appendix of gland unit each comprising a central cuticular canal surrounded by a lacl Cell enclosing lateral appendix (canal cell) proximal canal cell and a distal secretory cell. The canal lu Lumen of glandular ductule or canal cell forms a lateral appendix filled with a filamentous mass m Mitochondrion probably consisting of cuticle, and the cuticle inside the mgdcl Membrane of cell enclosing glandular ductule secretory cell is strongly spongiose—both structural fea- mlacl Membrane of cell enclosing lateral appendix tures previously not known for compound glands of beetles. ngc Non-glandular cell Additional data are provided for compound glands of the rw Ringwall around orifice of glandular ductule prosternal process and for simple (dermal) glands of the ss Spongiose structure of cuticular intima of pronotum. -
Status and Development of Old-Growth Elements and Biodiversity During Secondary Succession of Unmanaged Temperate Forests
Status and development of old-growth elementsand biodiversity of old-growth and development Status during secondary succession of unmanaged temperate forests temperate unmanaged of succession secondary during Status and development of old-growth elements and biodiversity during secondary succession of unmanaged temperate forests Kris Vandekerkhove RESEARCH INSTITUTE NATURE AND FOREST Herman Teirlinckgebouw Havenlaan 88 bus 73 1000 Brussel RESEARCH INSTITUTE INBO.be NATURE AND FOREST Doctoraat KrisVDK.indd 1 29/08/2019 13:59 Auteurs: Vandekerkhove Kris Promotor: Prof. dr. ir. Kris Verheyen, Universiteit Gent, Faculteit Bio-ingenieurswetenschappen, Vakgroep Omgeving, Labo voor Bos en Natuur (ForNaLab) Uitgever: Instituut voor Natuur- en Bosonderzoek Herman Teirlinckgebouw Havenlaan 88 bus 73 1000 Brussel Het INBO is het onafhankelijk onderzoeksinstituut van de Vlaamse overheid dat via toegepast wetenschappelijk onderzoek, data- en kennisontsluiting het biodiversiteits-beleid en -beheer onderbouwt en evalueert. e-mail: [email protected] Wijze van citeren: Vandekerkhove, K. (2019). Status and development of old-growth elements and biodiversity during secondary succession of unmanaged temperate forests. Doctoraatsscriptie 2019(1). Instituut voor Natuur- en Bosonderzoek, Brussel. D/2019/3241/257 Doctoraatsscriptie 2019(1). ISBN: 978-90-403-0407-1 DOI: doi.org/10.21436/inbot.16854921 Verantwoordelijke uitgever: Maurice Hoffmann Foto cover: Grote hoeveelheden zwaar dood hout en monumentale bomen in het bosreservaat Joseph Zwaenepoel -
Comparative Study of Head Structures of Larvae of Sphindidae and Protocucujidae (Coleóptera: Cucujoidea)
Eur. J. Entorno?. 98: 219-232, 2001 ISSN 1210-5759 Comparative study of head structures of larvae of Sphindidae and Protocucujidae (Coleóptera: Cucujoidea) Rolf Georg BEUTEL1 and Stanislaw Adam SLIPIÑSKI2 'Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, 07743 Jena, Germany; e-mail:[email protected] 2Muzeum i Instytut Zoologii PAN, ul. Wilcza 64, 00-679 Warszawa, Poland, e-mail:[email protected] Key words.Cucujoidea, Sphindidae, Protocucujidae, larvae, morphology, phylogeny Abstract. Selected representatives of Cucujoidea, Cleroidea, Tenebrionoidea, Chrysomelidae, and Lymexylidae were examined. External and internal head structures of larvae ofSphindus americanus and Ericmodes spp. are described in detail. The data were analyzed cladistically. A sister group relationship between Sphindidae and Protocucujidae is suggested by the vertical position of the labrum. The monophyly of Cucujiformia is supported by the reduced dorsal and anterior tentorial arms, fusion of galea and lacinia, and the presence of tube-like salivary glands. Absence of M. tentoriopraementalis inferior and presence of a short prepharyngeal tube are potential synapomorphies of Cleroidea, Cucujoidea and Tenebrionoidea. The monophyly of Cleroidea and Cucujoidea is suggested by the unusual attachment of the M. tentoriostipitalis to the ventral side of the posterior hypopharynx. Cucujoidea are paraphyletic. The families Endomychidae, Coccinellidae and Nitidulidae are more closely related to the monophyletic Cleroidea, than to other cucujoid groups. Separation of the posterior tentorial arms from the tentorial bridge and presence of a maxillolabial complex are synapomorphic features of Cleroidea and these cucujoid families. For a reliable reconstruction of cucujoid interrelation ships, further characters and taxa need to be studied. INTRODUCTION for a reconstruction of the phylogeny of the cucujoid, Sphindidae and Protocucujidae are two small families tenebrionoid and cleroid families. -
Coleoptera: Polyphaga: Derodontidae
World catalogue of the family Derodontidae (Coleoptera) Jiří Háva Prague-west, Czech Republic 2018 The Catalogue is actualized version of published author´s catalogue Háva (2006). List of collections Acronyms of collections follow when possible Arnet et al. (1993). ANIC Australian National Insect Collection, Canberra, Australia APUC private collection of Andreas Pütz, Eisenhüttenstadt, Germany BMNH British Museum (Natural History), London, United Kingdom EUMJ Entomological Laboratory, Ehime University, Matsuyama, Japan HNHM Hungarian Natural History Museum, Budapest, Hungary IZAS Institute of Zoology, Academia Sinica, Beijing, China JHAC Private Entomological Laboratory and Collection, Jiří Háva, Praha, Czech Republic KMFC K. M. Fender collection, McMinnville, Oregon, Canada MCZC Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts MFNB Museum für Naturkunde (Humboldt), Berlin, Germany MHNG Muséum d´Histoire Naturelle, Geneve, Switzerland MNHN Museum d´Histoire Naturelle, Paris, France NIGP Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China NMBS Naturhistorisches Museum Basel, Switzerland NMNS National Museum of Natural Science, Taichung, Taiwan NMPC National Muzeum Praha, Czech Republic NSMT National Science Museum Natural History, Tokyo, Japan NZAC New Zealand Arthropod collection, Auckland, New Zealand OMNH Osaka Museum of Natural History, Osaka, Japan SANT Museo Nacional de Historia Natural, Santiago, Chile SMNS Staatliches Museum für Naturkunde Stuttgart, Germany ZMUM Zoological Museum, University of Moscow, Russia 1 CATALOGUE OF ALL KNOWN SPECIES Family: DERODONTIDAE Syn.: Laricobiidae Ganglbauer, 1899 Peltasticidae LeConte, 1861 Subfamily: Derodontinae LeConte, 1861 genus: Derodontus LeConte, 1861 Type species: Cryptophagus maculatus Melsheimer, 1844 Syn.: Mycetonychus Frivaldszky, 1865:192 - Type species: Corticaria macularis Fuss, 1850 List of species 1. Derodontus esotericus Lawrence in Lawrence & Hlavac, 1979 - Derodontus esotericus Lawrence in Lawrence & Hlavac, 1979:403. -
Your Name Here
RELATIONSHIPS BETWEEN DEAD WOOD AND ARTHROPODS IN THE SOUTHEASTERN UNITED STATES by MICHAEL DARRAGH ULYSHEN (Under the Direction of James L. Hanula) ABSTRACT The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, ground- dwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots. -
On the Nearctic Cryptophilus REITTER, 1874 (Coleoptera: Erotylidae) 1133-1137 Linzer Biol
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Linzer biologische Beiträge Jahr/Year: 2017 Band/Volume: 0049_2 Autor(en)/Author(s): Esser Jens Artikel/Article: On the Nearctic Cryptophilus REITTER, 1874 (Coleoptera: Erotylidae) 1133-1137 Linzer biol. Beitr. 49/2 1133-1137 11.12.2017 On the Nearctic Cryptophilus REITTER, 1874 (Coleoptera: Erotylidae) Jens ESSER A b s t r a c t : The nearctic Cryptophilus REITTER, 1874 are revised. There are three species; all are introduced from the Palaearctic Region. The species described from the Nearctic Region by CASEY (1924) are junior synonyms. Key words: Erotylidae, Cryptophilus, Nearctic Region, new synonymy. Introduction There is different information about the number of species of Cryptophilus REITTER, 1874 in the Nearctic Region. LAWRENCE & VAURIE (1983) and ARNETT et al. (2002) mentioned three species for the United States and Canada: Cryptophilus fluminalis CASEY, 1924, C. integer (HEER, 1841) and C. seriatus CASEY, 1924. BOUSQUET et al. (2013) mentioned only C. integer (HEER, 1841) for Alaska and Canada. Studying the types of Cryptophilus fluminalis CASEY, 1924 and C. seriatus CASEY, 1924 and the revision of C. integer (HEER, 1841) (ESSER 2016) shows that the Nearctic is inhabited by three species: C. obliteratus REITTER, 1874 (= C. seriatus CASEY, 1924), C. propinquus REITTER, 1874 (= C. fluminalis CASEY, 1924, C. integer sensu auct.) and C. angustus (ROSENHAUER, 1856) (= C. integer sensu auct.). The name "integer HEER, 1841" is a junior synonym of Micrambe abietis (PAYKULL, 1798) (ESSER 2016). As in the Palaearctic Region are in the United States and Canada two different species named "integer": C. -
Curriculum Vitae Nico M
Nico M. Franz – Vitae, February 2020 1 Curriculum Vitae Nico M. Franz Address Campus School of Life Sciences PO Box 874501 Arizona State University Tempe, AZ 85287-4501, USA Collection Alameda Building – Natural History Collections 734 West Alameda Drive Tempe, AZ 85282-4108, USA Collection – AB 145: (480) 965-2036 Fax: (480) 727-2203 Virtual E-mail: [email protected] Twitter: @taxonbytes BioKIC: https://biokic.asu.edu/ Education 1993 – 1996 Prediploma in Biology, University of Hamburg, Hamburg, Germany Undergraduate Advisor: Klaus Kubitzki 1996 Diploma Studies in Systematic Botany and Ecology, University of Ulm, Ulm, Germany Graduate Advisor: Gerhard Gottsberger 1996 – 1999 M.Sc. in Biology, University of Costa Rica, San José, Costa Rica Graduate Advisor: Paul E. Hanson 1999 Graduate Research Fellow, Behavioral Ecology, Smithsonian Tropical Research Institute (STRI), Balboa, Panama Research Advisor: William T. Wcislo 1999 – 2005 Ph.D. in Systematic Entomology, Cornell University, Ithaca, NY Graduate Advisor: Quentin D. Wheeler 2003 – 2005 Postdoctoral Research Fellow, National Center for Ecological Analysis and Synthesis, University of California at Sta. Barbara, Sta. Barbara, CA Postdoctoral Mentor: Robert K. Peet Languages English, German, Spanish (fluent); French, Latin, Vietnamese (proficient) Nico M. Franz – Vitae, February 2020 2 Faculty Appointments 2006 – 2011 Assistant Professor (tenure-track appointment), Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, PR 2011 – present Adjunct Professor, Department