Photogrammetric and Lidar Data Registration Using Linear Features

Total Page:16

File Type:pdf, Size:1020Kb

Photogrammetric and Lidar Data Registration Using Linear Features 03-071.qxd 9/5/05 21:05 Page 699 Photogrammetric and Lidar Data Registration Using Linear Features Ayman Habib, Mwafag Ghanma, Michel Morgan, and Rami Al-Ruzouq Abstract objects in which surfaces play an important role (Habib and The enormous increase in the volume of datasets acquired Schenk, 1999). Photogrammetry is the conventional method by lidar systems is leading towards their extensive exploita- for surface reconstruction. However, lidar systems, whether tion in a variety of applications, such as, surface reconstruc- ground based, airborne, or space borne, have recently emerged tion, city modeling, and generation of perspective views. as a new technology with a promising potential towards Though being a fairly new technology, lidar has been influ- dense and accurate data capture on physical surfaces (Schenk enced by and had a significant impact on photogrammetry. and Csathó, 2002). Photogrammetry and lidar have unique Such an influence or impact can be attributed to the com- characteristics that make either technology preferable in plementary nature of the information provided by the two specific applications. For example, photogrammetry is more systems. For example, photogrammetric processing of suited for mapping heavily populated areas, while lidar is imagery produces accurate information regarding object preferable in mapping Polar Regions. However, one can space break lines (discontinuities). On the other hand, lidar observe that a negative aspect in one technology is con- provides accurate information describing homogeneous trasted by a complementary strength in the other. Therefore, physical surfaces. Hence, it proves logical to combine data integrating the two systems would prove extremely benefi- from the two sensors to arrive at a more robust and com- cial (Schenk and Csathó, 2002). plete reconstruction of 3D objects. This paper introduces Photogrammetric object space reconstruction starts with alternative approaches for the registration of data captured identifying features of interest in overlapping images. Con- by photogrammetric and lidar systems to a common refer- jugate features and the exterior orientation parameters of the ence frame. The first approach incorporates lidar features as involved images are then used in an intersection procedure control for establishing the datum in the photogrammetric yielding corresponding object features. Surfaces derived from bundle adjustment. The second approach starts by manipu- terrestrial and aerial imagery possess a rich body of scene lating the photogrammetric imagery to produce a 3D model, information. Moreover, derived object space features are very including a set of linear features along object space disconti- accurate, especially if they appear in more than two images as nuities, relative to an arbitrarily chosen coordinate system. a result of the high redundancy. The weakness of photogram- Afterwards, conjugate photogrammetric and lidar straight- metry is the “matching problem” (i.e., finding corresponding line features are used to establish the transformation be- features in overlapping images). The success of automatic tween the arbitrarily chosen photogrammetric coordinate surface reconstruction from imagery is contingent on the system and the lidar reference frame. The second approach reliability of the matching process. Manual or automatic (bundle adjustment, followed by similarity transformation) is matching is only possible when features with unique gray- general enough to be applied for the co-registration of mul- scale value distribution function are used. As a result, im- tiple three-dimensional datasets regardless of their origin plemented features usually correspond to locations along (e.g., adjacent lidar strips, surfaces in GIS databases, and discontinuities in one or more directions within the images temporal elevation data). The registration procedure would (e.g., edges and interest points). Such features usually pertain allow for the identification of inconsistencies between the to discontinuities and break lines in the object space. There- surfaces in question. Such inconsistencies might arise from fore, photogrammetric surfaces provide a rich set of informa- changes taking place within the object space or inaccurate tion along object space break lines and almost no information calibration of the internal characteristics of the lidar and the along homogeneous surfaces with uniform texture. photogrammetric systems. Therefore, the proposed method- Lidar has been conceived as a method to directly and ology is useful for change detection and system calibration accurately capture digital elevation data. However, in order applications. Experimental results from aerial and terrestrial to reach the high accuracy potential, the lidar system must datasets proved the feasibility of the suggested methodologies. be well calibrated and equipped with a high end DGPS/INS navigation unit (Filin and Csathó, 1999). An appealing feature in the lidar output is the direct availability of 3D Introduction coordinates of points in the object space. The surface recon- Currently, a variety of applications demand fast and reliable struction process is simply formulated as a three-dimensional collection of data about physical objects (e.g., automatic DEM rigid body transformation of points from scanner space to generation, city modeling, and object recognition). Such object space. One should note that there is no inherent applications require the availability of information pertain- redundancy in the computation of lidar points. Moreover, ing to the geometric and semantic characteristics of such Photogrammetric Engineering & Remote Sensing Vol. 71, No. 6, June 2005, pp. 699–707. Department of Geomatics Engineering, University of Calgary, 2500, University Drive, NW., Calgary, Alberta, Canada T2N 0099-1112/05/7106–0699/$3.00/0 1N4 ([email protected]; mghanma@geomatics. © 2005 American Society for Photogrammetry ucalgary.ca; [email protected]; [email protected]). and Remote Sensing PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING June 2005 699 03-071.qxd 9/5/05 21:05 Page 700 lidar surfaces are mainly positional, and there is no addi- registration primitives from photogrammetric and lidar data tional semantic or scene information available except when is explained. Then, the details of the mathematical model for the intensity of the reflected signal is recorded. Since lidar establishing the transformation parameters between the two provides a discrete set of irregularly distributed object points, datasets are introduced. The last two sections cover experi- the acquired surfaces possess rich information along homo- mental results (using terrestrial and airborne datasets), as geneous physical surfaces, and almost no information along well as, conclusions and recommendations for future work. object space discontinuities. It should be clear from the previous discussion that the integration of photogrammetric and lidar data would be Registration Paradigm extremely beneficial. For example, lidar surfaces could be In general, any registration process aims at combining data used to constrain and resolve ambiguities in the photogram- and information from multiple sensors in order to achieve an metric matching process. Moreover, photogrammetric data improved accuracy and better inference about the environ- will enrich lidar surfaces by providing more semantic attri- ment than could be attained through the use of a single butes. Also, photogrammetric and lidar surfaces can be sensor. Due to the enormous increase in the volume of spa- inspected for inconsistencies, which has to be justified (e.g., tial data that is being acquired by an ever-growing number changes in the object space or inaccurate calibration of the of sensors, there is a pressing need for the development of internal characteristics of either system). Therefore, success- accurate and robust registration procedures that can handle ful integration will facilitate subsequent processing activities spatial data with varying formats. An effective registration such as system calibration, object recognition, and genera- procedure must address the following issues (Brown, 1992): tion of 3D textured models. However, achieving the full potential of the synergism between the two technologies is Registration Primitives contingent on accurate and reliable co-registration of the The first step in the registration procedure is to decide upon respective surfaces relative to the same reference frame the primitives to use for establishing the transformation be- (Habib and Schenk, 1999; Schenk, 1999; Postolov et al., tween the datasets in question. The primitive choice influ- 1999). This should not be surprising, since any registration ences subsequent registration steps. In this research, straight- process aims at combining data and information from mul- line features have been used as the registration primitives. tiple sensors in order to achieve improved accuracies and This choice is motivated by the fact that such primitives can better inference about the environment than could be attained be reliably, accurately, and automatically extracted from through the use of a single sensor (Brown, 1992). photogrammetric and lidar datasets. The most common methods for solving the registration problem between two datasets are based on the identifica- Similarity Measure tion of common points. Such methods are not applicable The next step in the registration paradigm is the selection of when dealing with lidar surfaces, since
Recommended publications
  • Assessing the Accuracy of Underwater Photogrammetry for Archaeology
    Journal of Marine Science and Engineering Article Assessing the Accuracy of Underwater Photogrammetry for Archaeology: A Comparison of Structure from Motion Photogrammetry and Real Time Kinematic Survey at the East Key Construction Wreck Anne E. Wright 1,* , David L. Conlin 1 and Steven M. Shope 2 1 National Park Service Submerged Resources Center, Lakewood, CO 80228, USA; [email protected] 2 Sandia Research Corporation, Mesa, AZ 85207, USA; [email protected] * Correspondence: [email protected] Received: 17 September 2020; Accepted: 19 October 2020; Published: 28 October 2020 Abstract: The National Park Service (NPS) Submerged Resources Center (SRC) documented the East Key Construction Wreck in Dry Tortugas National Park using Structure from Motion photogrammetry, traditional archaeological hand mapping, and real time kinematic GPS (Global Positioning System) survey to test the accuracy of and establish a baseline “worst case scenario” for 3D models created with NPS SRC’s tri-camera photogrammetry system, SeaArray. The data sets were compared using statistical analysis to determine accuracy and precision. Additionally, the team evaluated the amount of time and resources necessary to produce an acceptably accurate photogrammetry model that can be used for a variety of archaeological functions, including site monitoring and interpretation. Through statistical analysis, the team determined that, in the worst case scenario, in its current iteration, photogrammetry models created with SeaArray have a margin of error of 5.29 cm at a site over 84 m in length and 65 m in width. This paper discusses the design of the survey, acquisition and processing of data, analysis, issues encountered, and plans to improve the accuracy of the SeaArray photogrammetry system.
    [Show full text]
  • Aerial Photogrammetry and Terrestrial (Close Range) Photogrammetry
    Introduction Photogrammetry is a surveying and mapping technique which can be used in various applications. There are many uses of Photogrammetry in the surveying industry such as topographic mapping, site planning, earthwork volumes, production of digital elevation models (DEM) and orthphotography maps. It is also useful in a vast selection of industries such as architecture, manufacturing, police investigation, and even plastic surgery. The word “photogrammetry” is composed of the words “photo” and “meter” which means measurements from photographs. The classical definition of photogrammetry is: The art, science and technology of obtaining reliable information about physical objects and the environment, through processes of recording, measuring, and interpreting images on photographs. (www.state.nj.us/transportation/eng/documents/survey/Chapter7.shtm) Photogrammetry is a skilled profession for the reason that obtaining reliable measurements requires certain skills, techniques and judgments to be made by the Photogrammetrist and experience is an advantage. It is a science and technology because it takes information from an image and transforms this data into meaningful results. Types of Photogrammetry There are two types of Photogrammetry, Aerial Photogrammetry and Terrestrial (Close Range) Photogrammetry. Aerial digital photogrammetry, often used in topographical mapping, begins with digital photographs or video taken from a camera mounted on the bottom of an airplane. The plane often flies over the area in a meandering flight path so it can take overlapping photographs or video of the entire area to get complete coverage. Close-range, or terrestrial, digital photogrammetry often uses photographs taken from close proximity by hand held cameras or those mounted to a tripod.
    [Show full text]
  • Photogrammetry and 3D Laser Scanning As Spatial Data Capture Techniques for a National Craniofacial Database
    The Photogrammetric Record 20(109): 48–68 (March 2005) PHOTOGRAMMETRY AND 3D LASER SCANNING AS SPATIAL DATA CAPTURE TECHNIQUES FOR A NATIONAL CRANIOFACIAL DATABASE Zulkepli Majid ([email protected]) Universiti Teknologi Malaysia Albert K. Chong ([email protected]) University of Otago, New Zealand Anuar Ahmad ([email protected]) Halim Setan ([email protected]) Universiti Teknologi Malaysia Abdul Rani Samsudin ([email protected]) Universiti Sains Malaysia Abstract Photogrammetry is a non-contact, high-accuracy, practical and cost-effective technique for a large number of medical applications. Lately, three-dimensional (3D) laser scanning and digital imaging technology have raised the importance of digital photogrammetry technology to a new height in craniofacial mapping. Under the support of the Eighth Malaysian Development Plan, the Ministry of Science, Technology and the Environment (MOSTE) Malaysia allocated a grant to establish procedures for the development of a national craniofacial spatial database to assist the medical profession to provide better health services to the public. To populate the database with normal and abnormal (malformation, diseased and trauma and burn victims) craniofacial information, it is necessary to evaluate the technology needed to capture the essential data of craniofacial features. The paper provides a discussion on the basic features of the spatial data and the data capture techniques. Both are needed for the establishment of a national spatial craniofacial database. The discussion includes a brief review of the current status of two selected high-accuracy craniofacial spatial data capture techniques, namely, digital photogrammetry and 3D laser scanning. The paper highlights a system which has been developed for a Malaysian craniofacial mapping project.
    [Show full text]
  • Chapter 4 Aerial Surveys
    Survey Manual Chapter 4 Aerial Surveys Colorado Department of Transportation December 30, 2015 TABLE OF CONTENTS Chapter 4 – Aerial Surveys 4.1 General ............................................................................................................................................. 4 4.1.1 Acronyms found in this Chapter ................................................................................................ 4 4.1.2 Purpose of this Chapter .............................................................................................................. 5 4.1.3 Aerial Surveys ............................................................................................................................ 5 4.1.4 Aerial Photogrammetry .............................................................................................................. 5 4.1.5 Photogrammetric Advantages / Disadvantages .......................................................................... 6 4.1.6 Aerial LiDAR ............................................................................................................................. 6 4.1.7 LiDAR Advantages / Disadvantages .......................................................................................... 7 4.1.8 Pre-survey Conference – Aerial Survey ..................................................................................... 9 4.2 Ground Control for Aerial Surveys ............................................................................................ 10 4.2.1 General ....................................................................................................................................
    [Show full text]
  • Applications of Photogrammetric and Computer Vision Techniques in Shake Table Testing
    13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3458 APPLICATIONS OF PHOTOGRAMMETRIC AND COMPUTER VISION TECHNIQUES IN SHAKE TABLE TESTING J.-A. BERALDIN1, C. LATOUCHE1, S.F. EL-HAKIM1, A. FILIATRAULT2 SUMMARY The paper focuses on the use of heterogeneous visual data sources in order to support the analysis of three-dimensional dynamic movement of a flexible structure subjected to an earthquake ground motion during a shake table experiment. During a shake table experiment, a great amount of data is gathered including visual recordings. In most experiments, visual information is taken without any specific analysis purpose: amateur’s pictures, video from a local TV station, analog videotapes. In fact, those sources might be meaningful and could be used for subsequent spatial analysis. The use of photogrammetric techniques is illustrated in the paper by performing a post-experiment analysis on analog videotapes that were recorded during a shake table testing of a full-scale woodframe house. INTRODUCTION This paper brings to the experimental earthquake engineering community new insights from the photogrammetric and computer vision fields. The paper focuses on the use of heterogeneous visual data sources in order to support the analysis of three-dimensional dynamic movement of a rigid or flexible structure subjected to an earthquake ground motion during a shake table experiment. During a shake table experiment, a great amount of data is gathered including visual recordings. In most experiments, visual information like those from amateur’s pictures, video from local TV stations, videotapes (digital or analog) is taken without any specific concern for the extraction of metric data in future analyses.
    [Show full text]
  • Photogrammetry.Pdf
    PHOTOGRAMMETRY STEREOSCOPY FLIGHT PLANNING PHOTOGRAMMETRIC DEFINITIONS GROUND CONTROL INTRODUCTION Before aerial photography and photogrammetry became a reliable mapping tool, planimetric and topographic mapping were primarily the products of the surveyor. Map compilation consisted of control computations and the compilation and assembly of field observations and measurements. Prior to World War II, photogrammetry was recognized mostly as a European science. Other than military and government use, it was not readily practiced in the private or engineering sectors of the United states. Since the domestic introduction of large scale map compilation by photogrammetric methods, the surveyor's role has continually changed in parallel with the rapid improvement of photogrammetric instrumentation and techniques. Today, a project comprising as few as five to six acres becomes an economic consideration with photogrammetric methods. It is now generally accepted that photogrammetric mapping from aerial photographs is the best mapping procedure yet developed for both large and small scale projects. It is faster and less expensive than any other method and provides more complete and accurate detail, supported by evidence that is historically retained in the wealth of detail of the aerial photograph. As versatile and diversified as photogrammetry has become so has the surveyor's role in supplying the quality foundation on which good mapping is based. It is impossible to make a map from aerial photographs without the underlying data provided by field surveys. FIELD SURVEYS Field surveys are required to: 1. Provide the basic horizontal and vertical control needed to determine the scale, azimuths, and basis of data for the photogrammetric process, 2. Provide mapping of certain desert or plain areas, sandy beaches, or snow where photographs do not show the ground surface well.
    [Show full text]
  • Network Design Considerations for Non-Topographic Photogrammetry
    CLIVES. FRASER* Division of Surveying Engineering The University of Calgary Calgary, Alberta T2N 1N4, Canada Network Design Considerations for Non-Topographic Photog rammetry The problems of zero-, first-, second-, and third-order network design are addressed. INTRODUCTION diagnosis is not considered. Aspects of network di- agn&is as they relate to engineering surveying are N PLANNING an optimal multi-station photogram- I metric network for some special purpose, such well covered in Alberda (1980) and Niemeier (1982), as for monitoring structural deformation or for de- and reliability considerations in close-range photo- termining the precise shape characteristics of an ob- grammetry have been addressed by Griin (1978, ject, due attention must be paid to the quality of 1980) and Torlegird (1980). the network design. Based on a given set of user Following the classification scheme of Grafarend accuracy specifications, quality is usually expressed (1974), the interrelated ~roblemsof network design in terms of the recision and reliability of the pho- can be identified as togrammetric network, but it also may include as- Zero-Order Design (zoo): the datum problem, pects of economy and testibility (Schmitt, 1981). First-Order Design (FOD) : the configuration problem, Precision is determined at the design stage as a Second-Order Design(s0~): the weight ~roblem,and function of the geometry of the network, i.e., its Third-Order Design (TOD) : the densification problem. configuration and the precision of the measure- By referring to the standard parametric model for ments involved. The observables usually comprise the self-calibrating bundle adjustment, the different ABSTRACT:In the establishment of an optimal multi-station, non-topographic pho- togrammetric network, a number of tasks need to be carried out at the planning stage.
    [Show full text]
  • Virtual Outcrops Building in Extreme Logistic Conditions for Data Collection, Geological Mapping, and Teaching: the Santorini’S Caldera Case Study, Greece
    Virtual Outcrops Building in Extreme Logistic Conditions for Data Collection, Geological Mapping, and Teaching: The Santorini’s Caldera Case Study, Greece Fabio Luca Bonali1,2 a, Luca Fallati1b, Varvara Antoniou3c, Kyriaki Drymoni4d, Federico Pasquaré Mariotto5e, Noemi Corti1f, Alessandro Tibaldi1,2 g, Agust Gudmundsson4 and Paraskevi Nomikou3h 1Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, Ed. U04, 20126, Milan, Italy 2CRUST- Interuniversity Center for 3D Seismotectonics with Territorial Applications, Italy 3Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15784 Athens, Greece 4Department of Earth Sciences, Queen's Building, Royal Holloway University of London, Egham, Surrey TW20 0EX, U.K. 5Department of Human and Innovation Sciences, Insubria University, Via S. Abbondio 12, 22100 Como, Italy [email protected], [email protected], [email protected], [email protected] Keywords: Virtual Outcrops, Photogrammetry, Structure from Motion, Santorini Volcano, Caldera, Dykes. Abstract: In the present work, we test the application of boat-camera-based photogrammetry as a tool for Virtual Outcrops (VOs) building on geological mapping and data collection. We used a 20 MPX camera run by an operator who collected pictures almost continuously, keeping the camera parallel to the ground and opposite to the target during a boat survey. Our selected target was the northern part of Santorini’s caldera wall, a structure of great geological interest. A total of 887 pictures were collected along a 5.5-km-long section along an almost vertical caldera outcrop. The survey was performed at a constant boat speed of about 4 m/s and a coastal approaching range of 35.8 to 296.5m.
    [Show full text]
  • 2008 ISPRS Congress Book and Spatial Information Sciences: Htgamty Remote Photogrammetry
    baltsavias_ISPRSvol7.qxd 26-05-2008 10:48 Pagina 1 ISPRS Book Series ISPRS Book Series in Photogrammetry, Remote Sensing and Spatial Information Sciences 7 Book Series Editor: Paul Aplin Spatial Information Sciences: 2008 ISPRS Congress Book Remote Sensing and Advances in Photogrammetry, Volume 7 Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences: 2008 ISPRS Congress Book Published on the occasion of the XXIst Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS) in Beijing, China in 2008, Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences: 2008 ISPRS Congress Book is a compilation of 34 contributions from 62 researchers active within the ISPRS. The book covers the state-of-the-art in photogrammetry, remote sensing, and spatial information sciences, and is divided into six parts: Introduction Sensors, Platforms and Data Acquisition Systems Data Processing and Analysis Data Modelling, Management and Visualisation Applications Education and Cooperation. Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences: 2008 ISPRS Congress Book provides a comprehensive overview of the progress made in these areas since the XXth ISPRS Congress, which was held in 2004 in Istanbul, Turkey. The volume will be invaluable not only to scientists and researchers, but also to university students and practitioners. Zhilin Li is Professor in Geo-Informatics at the Hong Kong Polytechnic University. He is Co-Chair of the Scientific Programme Committee of the XXIth ISPRS Congress and Vice President of the International Cartographic Association (ICA). His current research interests include multi-scale modelling and representation of spatial data, digital terrain modelling, spatial relations and spatial information Advances in theories, and remote image processing.
    [Show full text]
  • Comparison of Photogrammetric and Computer Vision Techniques - 3D Reconstruction and Visualization of Wartburg Castle
    COMPARISON OF PHOTOGRAMMETRIC AND COMPUTER VISION TECHNIQUES - 3D RECONSTRUCTION AND VISUALIZATION OF WARTBURG CASTLE Helmut Mayera, Matthias Moschb, Juergen Peipec a Bundeswehr University Munich, D-85577 Neubiberg, Germany - [email protected] b Albert-Ludwigs-Universität Freiburg, D-79106 Freiburg, Germany - [email protected] c Bundeswehr University Munich, D-85577 Neubiberg, Germany - [email protected] KEY WORDS: Cultural Heritage, Multimedia, Internet, Calibration, Orientation, Modelling, Comparison ABSTRACT: In recent years, the demand for 3D virtual models has significantly increased in areas such as telecommunication, urban planning, and tourism. This paper describes parts of an ongoing project aiming at the creation of a tourist information system for the World Wide Web. The latter comprises multimedia presentations of interesting sites and attractions, for instance, a 3D model of Wartburg Castle in Germany. To generate the 3D model of this castle, different photographic data acquisition devices, i.e., high resolution digital cameras and low resolution camcorder, are used. The paper focuses on the comparison of photogrammetric as well as automatic computer vision methods for camera calibration and image orientation based on the Wartburg data set. 1. THE WARTBURG PROJECT famous for being the place Martin Luther translated the New WARTBURG CASTLE is situated near Eisenach in the state of Testament into the German language about 1520, and Thuringia in Germany. Founded in 1067, the castle complex important as meeting-place and symbol for students and other (Fig. 1) was extended, destroyed, reconstructed, and renovated young people being in opposition to feudalism at 1820. several times. The Wartburg is a very prominent site with Nowadays, this monument full of historical reminiscences is a respect to German history, well-known because of the significant cultural heritage landmark and, obviously, a medieval Contest of Troubadours around the year 1200 , touristic centre of attraction.
    [Show full text]
  • Digital Photogrammetry and Laser Scanning in Cultural Heritage Survey
    DIGITAL PHOTOGRAMMETRY AND LASER SCANNING IN CULTURAL HERITAGE SURVEY A. Guarnieria, A. Vettorea, S. El-Hakimb, L. Gonzoc, a CIRGEO– Interdept. Research Center of Geomatics, University of Padova, Italy - [email protected] bVisual Information Technology, NRC, Ottawa, Canada –[email protected] c Istituto Tecnico per la Ricerca Scientifica e Tecnologica,Trento, Italy - [email protected] Commission V, Working Group V/2 KEYWORDS: laser scanning, 3D modeling, image-based model ABSTRACT: A joint project between the Interdept. Research Center of the University of Padova (CIRGEO), a research group of Istituto Tecnico per la Ricerca Scientifica e Tecnologica (IRST) of Trento and the Visual Information Technology group (VIT) of the NRC Canada, in Ottawa, has been undertaken, with the main aim to create a set of 3D models of an historical building by means of photogrammetry and laser scanning-based surveying techniques. Beside the investigation of their geometric accuracy, a photo- realistic representation suited for interactive navigation and manipulation in VR environment was a further objective of thie project. To this aim, the main room in the Aquila tower in Buonconsiglio castle (Trento, Italy) was choosen, as it featured a relative simple geometry along with artistically and historically very precious frescoed walls. In this paper a description of both surveying and modeling procedures adopted and results of a comparison test between employed techniques are presented. 1. INTRODUCTION and registered with the geometric data in order to perform the texturing of the 3D model by laser scanning. For this project One of the major masterpieces of international Gothic art the work has been arranged as follows: CIRGEO team created (1350-1450) is the Cycle of the Months, a fresco to be found in the models both from range data, whereas the IRST team and the Aquila tower in Buonconsiglio castle, Trento, Italy.
    [Show full text]
  • Photogrammetry for Small Scale Cartorgraphy
    PHOTOGRAMMETRY FOR SMALL SCALE CARTOGRAPHY* METHODS AND RESULTS I. Aerial Surveys OR economic reasons and in order to reduce to a minimum the number of Fground control points, aerial photographs are taken at the smallest scale compatible with clear definition. This can be done either by flying at greater altitudes or else by using a shorter focus camera. Of these two factors the altitude of the flight is limited by the performance of the airplane and also by meteoro­ logical conditions. Experience has shown that best results are obtained when a certain definite numerical ratio exists between the scale of the projected chart and the scale of the photographs. In general, the scale of the photograph should not exceed the ratio of about 1: 60,000 to 1: 80,000 since otherwise important de­ tails necessary for the cartography cannot be clearly recognized. When a large expanse of territory is to be covered, the trend will be towards photographs taken with the widest possible angle. Already attempts had been made to increase the angle of the objective beyond that which it was possible to obtain with individual objectives by employing cameras with multiple objec­ tives placed at an angle to each other and joined together with a single shutter contro!' The individual partial photographs are then generally transformed in an optical apparatus to form a single picture. New constructions of this kind are the Aschenbrenner panoramic camera for very small scale work and the nine­ lense camera for the U. S. Coast and Geodetic Surveyl for medium scale (the latter weighs 340 kg.~when loaded for service.) The complications in construction thus brought about have been overcome in Germany by the use of the wide­ angle Topogon lense of Zeiss which has a field of 105°.
    [Show full text]