Dwdm Topologies

Total Page:16

File Type:pdf, Size:1020Kb

Dwdm Topologies CHAPTER 16 DWDM TOPOLOGIES 16.1 INTRODUCTION Dense wavelength division multiplexing (DWDM) networks are classified into four major topological configurations: DWDM point-to-point with or without add-drop multiplexing network, fully connected mesh network, star network, and DWDM ring network with OADM nodes and a hub. Each topology has its own requirements and, based on the application, different optical components may be involved in the re- spective designs. In addition, there are hybrid network topologies that may consist of stars and/or rings that are interconnected with point-to-point links. For example, the Metropolitan Optical Network project (MONET) is a WDM network developed for and funded by a number of private companies and by U.S. government agencies. It consists of two sub- networks, one located in New Jersey and one in the Washington, D.C./Maryland area; the two are interconnected with a long-distance point-to-point optical link. 16.2 POINT-TO-POINT TOPOLOGY Point-to-point topology is predominantly for long-haul transport that requires ultrahigh speed (10-40 Gb/s), ultrahigh aggregate bandwidth (in the order ofseveral ter- abits per second), high signal integrity, great reliability, and fast path restoration capa- bility. The distance between transmitter and receiver may be several hundred kilome- ters, and the number of amplifiers between the two end points is typically less than 10 (as determined by power loss and signal distortion). Point-to-point with add-drop mul- tiplexing enables the system to drop and add channels along its path. Number of chan- nels, channel spacing, type of fiber, signal modulation method, and component type se- lection are all important parameters in the calculation of the power budget. 197 198 Part IV Dense Wavelength Division Multiplexing Figure 16.1 A DWDM point-to-point with add-drop multiplexing enables the system to drop and add channels along its path. In DWDM, each channel is carried over a specified wavelength (hi) also known as "optical channel." Different channels may carry different data (e.g., voice, data, video, data packets) at different bit rates. The transmitter-receiver optical link has several optical components: fiber(s), optical amplifiers, OADM, optical filters, cou- plers, laser sources, and modulators and receivers. Each has its own signal-affecting characteristic, as described in Part II. An end-to-end simplistic view of a DWDM point-to-point system that includes lasers, an optical multiplexer and demultiplexer, fibers, optical amplifiers (OA), and an optical add-drop multiplexer is shown in Figure 16.1. 16.3 RING-CONFIGURED MESH AND STAR NETWORKS A variety of proprietary ring DWDM networks have been deployed. In general, a DWDM ring network consists of a fiber in a ring configuration that fully intercon- nects nodes; some systems have two fiber rings for network protection. Such a ring may cover a local or a metropolitan area and span a few tens of kilometers. The fiber ring may contain few (4) to many wavelength channels, and few to many nodes. The bit rate per wavelength channel may be 622 Mb/s or lower, or 1.25 Gb/s or higher. One of the nodes on the ring is a hub station where all wavelengths are sourced, ter- minated, and managed; connectivity with other networks takes place at this hub sta- tion. Each node and the hub have optical add-drop multiplexers (OADM) to dropoff and add one or more designated wavelength channels. In DWDM ring networks, the hub station may source and terminate several types of traffic [e.g., synchronous transport module (STM) IP, video] . The hub manages all channels (wavelengths) assigned to a path between nodes and also the traffic type. At an OADM, one (or more) optical frequency is dropped off and added, whereas the remaining frequencies pass through transparently. However, as the number of OADMs increases, the signal is subject to losses and optical am- Chapter 16 DWDM Topologies 199 IP _~~,,~~ lJ~ STM -- ...; Figure 16.2 A DWDM ring network; the hub station sources and terminates payloads of several types. plification (not shown) may be required. The number of nodes is typically less than the number of wavelengths in the fiber. Figure 16.2 depicts a basic configu- ration but does not address network survivability or ring fault avoidance. In the ring topology, the hub station manages channel (wavelength) assign- ment so that a fully connected network of nodes with OADM is accomplished. The hub may also provide connectivity with other networks . In addition, an OADM node may be connected with a multiplexer/demultiplexer where several data sources are multiplexed. A simple ring topology with a hub and two nodes, A and B, linked via wavelength Ak is shown in Figure 16.3, where node A also multi- plexes several data sources. All data sources are terminated by the corresponding OADM node (node B), however, since they are on the same channel (and the same wavelength). Figure 16.3 In a DWDM ring topology, channel (wavelength) assignment may be managed by the hub station. 200 Part IV Dense Wavelength Division Multiplexing FiberVista: A high-level view The FiberVista research project employs both dense and coarse wavelength division multi- plexing. At the curb, where coax meets fiber, coarse WDM supports a two-way link between an optical-electrical converter and the nearest hub in downstream transmission. Dense WDM simplifies delive ry of different levels of customer-specific content, which are received by everyone the system serves .Demultiplexing at a hub separates out narrowcast content targeted at nearby towns. Video or data destined for a particular home is combed out of the spectrum and delivered in much the same way. Downstream Figure 16.4 View of LUCENT Technologies' project FiberVista is illustrative of a DWDM and CWDM system that delivers all service types to the home. (From LUCENT Technologies, Bell Labs Technology, vol. 2, no. 2, 1998, p. 13. Reprinted with permission.) A project that is illustrative of a coarse WDM (CWDM) system applied in the access area (residential) is illustrated in Figure 16.4. This project, dubbed FiberVista, reuses TV technology to open up the fiber capacity to residential users and offers to the home all types of service-IP, video, analog, and digital. With FiberVista, each hub on a fiber ring can serve 10,000-30,000 homes; hubs can be as far apart as 125 km. From the master head, a transceiver (an optical-electrical con- verter) converts the optical signal to electrical via a coax cable with taps that feed in- dividual homes where cable modems and set-t boxes can select among TV, Internet, and voice services. Such a system would transmit in the upstream direction (from the home) more than 4 Mb/s per home, and in the downstream direction (to the home) about 1 Obis . At the curb, where coax meets fiber, bidirectional CWDM support (1550 nm downstream and 1300 nm upstream) links the transceiver with the hub. Similar ring architectures are also studied for metropolitan (large city) and for en- terprise (business community, high rises) networks. Chapter 16 DWDM Topologies 201 16.4 A DWDM HUB The area of DWDM node and DWDM hub is currently evolving. Thus in this sec- tion we attempt to provide stimulating discussion without any effort to provide sys- tem solutions. 16.4.1 Transmit Direction A hub, in general, accepts various (electrical) payloads, such as communications transport protocoVInternet Protocol (TCPIIP), asynchronous transfer mode (ATM), STM, and high-speed Ethernet (l Gb/s, 10 Gb/s). Each traffic type (channel) is sent to its corresponding physical interface, where a wavelength is assigned and is mod- ulated at the electrical-to-optical converter. The optically modulated signals from each source are then optically multiplexed and launched into the fiber (Figure 16.5). Wavelength manager Modulators and r·······························..·······.. ·· ..··• ········· .. ··· ..·.. ~pi ·i·~~·I ·t;~nsmitters TCP/IP r TCP/IP i ATM r ATM Single-mode fiber STM STM PHY i Transmit direction .lI ljii s Electronic regime Photonic regime Figure 16.5 The hub (in the transmit direction) receives a variety of traffic types (TCPfIP, ATM, STM, etc.). Each type is launched into the fiber on a separate wavelength . 16.4.2 Receive Direction When a hub receives a WDM signal, it optically demultiplexes it to its component wavelengths (channels) and converts each optically modulated signal to a digital electrical signal. Each digital signal then is routed to its corresponding electrical in- terface: TCPIIP, ATM, STM, and so on (Figure 16.6). Notice, however, that each 202 Part IV Dense Wavelength Division Multiplexing _ . ............... .................. Detedtors TCP/IP 4 '-- -' ~====~ ATM 1 Single-mode fiber STM 1+-- Receive direction .lI! PHY iii · .. Electronic regime Photonic regime Figure 16.6 The hub (in the receive direction) demultiplexes the optical signal to its component, wavelength channels, and it converts each channel to a traffic type, TCP/lP, ATM, STM, etc. channel requires its own clock recovery circuitry (only one is shown) because all channels may be at different bit rates. 16.5 FAULTS DWDM networks must be able to detect faults on the link or on the ring (broken fiber, faulty port unit, inoperable node) and to isolate a fault. The objective is to of- fer continuous transmission (service) or service with the minimum disruption possi- ble, as recommended in the standards. Depending on network topology and archi- tecture, fault avoidance may be accomplished with dual counterrotating rings (in ring networks), similar to the fiber-distributed data interface (FOOl). When a fault is detected in a counterrotating ring architecture, the neighboring OADMs avoid the fault by rerouting traffic via a Ll-turn optical cross-connect (Figure 16.7).
Recommended publications
  • Introducing Zigbee Theory and Practice Into Information and Computer Technology Disciplines
    AC 2007-1072: INTRODUCING ZIGBEE THEORY AND PRACTICE INTO INFORMATION AND COMPUTER TECHNOLOGY DISCIPLINES Crystal Bateman, Brigham Young University Crystal Bateman is an Undergraduate Student at BYU studying Information Technology. Her academic interests include ubiquitous technologies and usability. She is currently finishing an honors thesis on using mobile ZigBee motes in a home environment, and enjoying life with her husband and two daughters Janell Armstrong, Brigham Young University Janell Armstrong is a Graduate Student in Information Technology at BYU. Her interests are in ZigBee and public key infrastructure. She has three years experience as a Teacher's Assistant. Student memberships include IEEE, IEEE-CS, ACM, SWE, ASEE. C. Richard Helps, Brigham Young University Richard Helps is the Program Chair of the Information Technology program at BYU and has been a faculty member in the School of Technology since 1986. His primary scholarly interests are in embedded and real-time computing and in technology education. He also has interests in human-computer interfacing. He has been involved in ABET accreditation for about 8 years and is a Commissioner of CAC-ABET and a CAC accreditation team chair. He spent ten years in industry designing industrial automation systems and in telecommunications. Professional memberships include IEEE, IEEE-CS, ACM, SIGITE, ASEE. Page 12.982.1 Page © American Society for Engineering Education, 2007 Introducing ZigBee Theory and Practice into Information and Computer Technology Disciplines Abstract As pervasive computing turns from the desktop model to the ubiquitous computing ideal, the development challenges become more complex than simply connecting a peripheral to a PC. A pervasive computing system has potentially hundreds of interconnected devices within a small area.
    [Show full text]
  • 13 Embedded Communication Protocols
    13 Embedded Communication Protocols Distributed Embedded Systems Philip Koopman October 12, 2015 © Copyright 2000-2015, Philip Koopman Where Are We Now? Where we’ve been: •Design • Distributed system intro • Reviews & process • Testing Where we’re going today: • Intro to embedded networking – If you want to be distributed, you need to have a network! Where we’re going next: • CAN (a representative current network protocol) • Scheduling •… 2 Preview “Serial Bus” = “Embedded Network” = “Multiplexed Wire” ~= “Muxing” = “Bus” Getting Bits onto the wire • Physical interface • Bit encoding Classes of protocols • General operation • Tradeoffs (there is no one “best” protocol) • Wired vs. wireless “High Speed Bus” 3 Linear Network Topology BUS • Good fit to long skinny systems – elevators, assembly lines, etc... • Flexible - many protocol options • Break in the cable splits the bus • May be a poor choice for fiber optics due to problems with splitting/merging • Was prevalent for early desktop systems • Is used for most embedded control networks 4 Star Network Topologies Star • Can emulate bus functions – Easy to detect and isolate failures – Broken wire only affects one node – Good for fiber optics – Requires more wiring; common for Star current desktop systems • Broken hub is catastrophic • Gives a centralized location if needed – Can be good for isolating nodes that generate too much traffic Star topologies increasing in popularity • Bus topology has startup problems in some fault scenarios • Safety critical control networks moving
    [Show full text]
  • Survey of Important Issues in UAV Communications Networks
    1 Survey of Important Issues in UAV Communication Networks Lav Gupta*, Senior Member IEEE, Raj Jain, Fellow, IEEE, and Gabor Vaszkun technology that can be harnessed for military, public and civil Abstract—Unmanned Aerial Vehicles (UAVs) have enormous applications. Military use of UAVs is more than 25 years old potential in the public and civil domains. These are particularly primarily consisting of border surveillance, reconnaissance and useful in applications where human lives would otherwise be strike. Public use is by the public agencies such as police, endangered. Multi-UAV systems can collaboratively complete missions more efficiently and economically as compared to single public safety and transportation management. UAVs can UAV systems. However, there are many issues to be resolved provide timely disaster warnings and assist in speeding up before effective use of UAVs can be made to provide stable and rescue and recovery operations when the public communication reliable context-specific networks. Much of the work carried out in network gets crippled. They can carry medical supplies to areas the areas of Mobile Ad Hoc Networks (MANETs), and Vehicular rendered inaccessible. In situations like poisonous gas Ad Hoc Networks (VANETs) does not address the unique infiltration, wildfires and wild animal tracking UAVs could be characteristics of the UAV networks. UAV networks may vary from slow dynamic to dynamic; have intermittent links and fluid used to quickly envelope a large area without risking the safety topology. While it is believed that ad hoc mesh network would be of the personnel involved. most suitable for UAV networks yet the architecture of multi-UAV UAVs come networks has been an understudied area.
    [Show full text]
  • Comparison of Network Topologies for Optical Fiber Communication
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 1 Issue 10, December- 2012 Comparison Of Network Topologies For Optical Fiber Communication Mr. Bhupesh Bhatia Ms. Ashima Bhatnagar Bhatia Department of Electronics and Communication, Department of Computer Science, Guru Prem Sukh Memorial College of Engineering, Tecnia Institute of Advanced Studies, Delhi Delhi Ms. Rashmi Ishrawat Department of Computer Science, Tecnia Institute of Advanced Studies, Delhi Abstract advent of the Information age. Optical In this paper, the various network topologies technologies can cost effectively meet have been compared. The signal is analyzed as it corporate bandwidth needs today and passes through each node in each of the network tomorrow. Internet connections offering topology. There is no appreciable signal degradation in the ring network. Also there is bandwidth on demand, to fiber on the increase in Quality factor i.e. signal keeps on LAN. Fiber to the home can provide true improving as it passes through the successiveIJERT IJERTbroadband connectivity for nodes. For the bus topology, the quality of signal telecommuters as well as converged goes on decreasing with increase in the number multimedia offerings for consumers [2]. of nodes and the power penalty goes on increasing. For the star topology, it is observed These different communication networks that received power values of each node at a can be configured in a number of same distance from the hub are same and the topologies. These include a bus, with or performance is same. For the tree topology, it is without a backbone, a star network, a observed that the performance is almost identical ring network, which can be redundant to the performance of ring topology, as signal quality is improved as it passes through the and/ or self-healing, or some successive nodes of the hierarchy.
    [Show full text]
  • 16 1.6 . LAN Topology Most Computers in Organizations Connect to the Internet Using a LAN. These Networks Normally Consist of A
    1.6 . LAN Topology Most computers in organizations connect to the Internet using a LAN. These networks normally consist of a backbone which is a common link to all the networks within the organization. This backbone allows users on different network segments to communicate and also allows data into and out of the local network. Figure 7 shows a local area network which contains various segments: LAN A, LAN B, LAN C, LAN D, LAN E and LAN F. These are connected to the local network via the BACKBONE 1.Thus if LAN A talks to LAN E then the data must travel out of LAN A, onto BACKBONE 1, then into LAN C and through onto LAN E. Figure 7. Interconnection of local networks Networks are partitioned from other networks with a bridge, a gateway or a router. A bridge links a network of one type to an identical type, such as Ethernet, 16 or Token Ring to Token Ring. A gateway connects two dissimilar types of networks and routers operate in a similar way to gateways and can either connect to two similar or dissimilar networks. The key operation of a gateway, bridge or router is that they only allow data traffic through that is intended for another network, which is outside the connected network. This filters traffic and stops traffic, not intended for the network, from clogging-up the backbone. Most modern bridges, gateways and routers are intelligent and can automatically determine the topology of the network. Spanning-tree bridges have built-in intelligence and can communicate with other bridges.
    [Show full text]
  • Satellite Communication & Networking
    SATELLITE COMMUNICATION & NETWORKING Submitted By- Sanket Gupta NTPC Electronics & Communication National Thermal Power Corporation Raj Kumar Goel Engg. College INDEX 11.. IInnttrroodduuccttiioonn aa.. HHooww DDoo SSaatteelllliitteess WWoorrkk?? bb.. FFaaccttoorrss IInn SSaatteelllliittee Communication 22.. MMaajjoorr PPrroobblleemmss FFoorr SSaatteelllliitteess aa.. AAddvvaannttaaggeess OOff SSaatteelllliitteess Communication b.b. Disadvantages Of Satellites Communication 33.. TTyyppeess OOff SSaatteelllliitteess aa.. GGeeoossttaattiioonnaarryy EEaarrtthh OOrrbbiitt (GEO) bb.. LLooww EEaarrtthh OOrrbbiitt ((LLEEOO)) cc.. MMeeddiiuumm EEaarrtthh OOrrbbiitt ((MMEEOO)) 44.. FFrreeqquueennccyy BBaannddss OOff SSaatteelllliitteess aa.. SSaatteelllliittee SSeerrvviicceess bb.. FFrreeqquueennccyy BBaannddss 55.. TTeerrmmss UUsseedd IInn SSaatteelllliittee Communication 66.. CCoommppoonneennttss OOff SSaatteelllliittee Communication 7.7. Satellite Communication System 88.. SSaatteelllliittee EEaarrtthh SSttaattiioonn Introduction How Do Satellites Work? If two Stations on Earth want to communicate through rraaddiioo bbrrooaaddccaasstt bbuutt aarree ttoooo ffaarr aawwaayy ttoo uussee coconvnvenentitiononalal memeanans,s, ththenen ththesesee ststatatioionsns cacann ususee aa satellite as a relay station for their communicacommunication.tion. One Earth Station sends a transmission to the satellite. This is called an Uplink . ThThee sasateltellitlitee Transponder earthconverts station. the signalThis is calledand sends a Downlink it down.. to the
    [Show full text]
  • TR 101 984 V1.2.1 (2007-12) Technical Report
    ETSI TR 101 984 V1.2.1 (2007-12) Technical Report Satellite Earth Stations and Systems (SES); Broadband Satellite Multimedia (BSM); Services and architectures 2 ETSI TR 101 984 V1.2.1 (2007-12) Reference RTR/SES-00274 Keywords architecture, broadband, IP, multimedia, satellite ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.
    [Show full text]
  • Power Characterisation of a Zigbee Wireless Network in a Real Time Monitoring Application
    Power Characterisation of a Zigbee Wireless Network in a Real Time Monitoring Application Arrian Prince-Pike A thesis submitted to Auckland University of Technology in fulfilment of the requirements for the degree of Master of Engineering (ME) April 2009 School of Engineering Primary Supervisor: Dr John Collins Acknowledgements In completing this research I received help from a number of people. First I must thank my supervisor Dr John Collins for his support, guidance and advice during the course of this investigation. I must also thank AUT technician Achala Perera who provided me with much of the equipment required for the experimental investigation. Finally, thanks to my friends and family for their support during the course of my research. i Attestation of Authorship ‘I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person (except where explicitly defined in the acknowledgements), nor material which to a substantial extent has been submitted for the award of any other degree or diploma of a university or other institution of higher learning’ Arrian Prince-Pike April 2009 ii Table of Contents Acknowledgements.....................................................................................................................i Attestation of Authorship...........................................................................................................ii Table of Contents....................................................................................................................
    [Show full text]
  • Investigation of Wavelength Division Multiplexed Hybrid Ring-Tree-Star
    Optik 125 (2014) 6516–6519 Contents lists available at ScienceDirect Optik jo urnal homepage: www.elsevier.de/ijleo Investigation of wavelength division multiplexed hybrid ring-tree-star network topology to enhance the system capacity a a b Simranjit Singh , Raman , R.S. Kaler a Department of Electronics and Communication Engineering, Punjabi University, Patiala, Punjab, 147002, India b Department of Electronics and Communication Engineering, Thapar University, Patiala, Punjab, 147004, India a r a t i b s c t l e i n f o r a c t Article history: In this paper, we have investigated wavelength division multiplexed (WDM) hybrid (ring-tree-star) topol- Received 16 November 2013 ogy. Eight optical add/drop multiplexers (OADMs) are used to make ring structure. The single mode fiber Accepted 19 June 2014 and dispersion compensating fiber and semiconductor optical amplifier (SOA) are employed between each OADM to achieve a maximum. To increase the number of users each OADM node of ring network Keywords: is connected to star and tree network topology which can accommodate more than 2048 users. Various Passive optical network (PON) system parameters (for different channel spacing, different input power signal, different data rates and Rmote node the fiber length) are varied to investigate the system performance in the term of BER and Q factor. Bit error rate © 2014 Elsevier GmbH. All rights reserved. Semiconductor optical amplifier (SOA) Optical add/drop multiplexer (OADM) 1. Introduction Chenwei Wu et al. [11] purposed a tree ring structure with the bit rate 1.25 Gbps at 27 km that protected the network at from Optical networks are the revolution in technology because they either dual or single fiber failure and also crosstalk between deliver the increased bandwidth demanded by the information uplink and downlink in fiber.
    [Show full text]
  • Intro to Computer Networks
    CIT 001 - FUNDAMENTALS OF COMPUTER SYSTEMS ONLINE SUPPROT SERVICES CERTIFICATE IN INFORMATION TECHNOLOGY IGNOU SC-2281 Jakhepal-Ghasiwala Road, Sunam For more information visit us at: nirmancampus.co.in Call us at: 9815098210, 9256278000 IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM) CIT 001 - FUNDAMENTALS OF COMPUTER SYSTEMS COMPUTER NETWORK AND ITS TYPES: A computer network is the interconnection of two or more computers. These computers are connected via some communication media. These computers are connected to share resources. There are many types of computer networks. Networks can be classified according to the geographical area. They can be classified into three categories: 1. Local Area Network (LAN) 2. Metropolitan Area Network (MAN) 3. Wide Area Network (WAN) 1. Local Area Network: A local area network (LAN) is a computer network. It interconnects computers within a limited area. This area can be a residence, school, library, or office building. LAN is relatively smaller than MAN and WAN. It is privately owned network. It provides local connectivity. In Offices, LAN is used to share resources. It can also be used to exchange information. A LAN is made up of many components. These components are Transmission channels (twisted pair cable, coaxial cable, fiber-optic cable etc.), Server Computer, Work Station or Client Computers, Network Interface Card (NIC), Hub, and shared resources (printers etc.) Features of LAN: Following are some important feature of LAN. Local Area Network has a limited geographic area Local Area Network has a limited number of Users Local Area Networks are reliable and stable. Chances of errors are very few. Local Area Networks are Flexible.
    [Show full text]
  • Performance Evaluation of Star Topology in Fiber Optic Communication
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Performance Evaluation of Star Topology in Fiber Optic Communication Lakshmi A Nair1, Lakshmy G B2 1P G Scholar, Optoelectronics and Communication Systems, Dept. of ECE T K M Institute of Technology Kollam, India [email protected] 2Assistant Professor Dept. of ECE T K M Institute of Technology Kollam, India Abstract:Topology refers to the layout of connected devices in a network. It describes the way in which the elements of the network are mapped. Optical network topologies such as bus, star and tree reduce complexity by using minimum number of couplers, multiplexers, demultiplexers and optical amplifiers and can reduce cost in large network. Star networks are simplest form of the network topologies. This network topology consists of one central computer, which acts as a central node, to which all other nodes are connected. The performance of star topology is investigated and identified that, it distributes optical power equally to all output ports. Maximum number of users supported by star topology is less than 64. Keywords:BER (Bit Error Rate), LAN (Local Area Network), Q Factor, Star Topology. 1. Introduction other nodes in the network and the mapping of these links and nodes onto a graph results in a geometrical shape that Fiber-optic communication systems have revolutionized the determines the physical topology of the network. Likewise, telecommunications industry and played a major role in the the mapping of the flow of data between the nodes in the advent of the Information age.
    [Show full text]
  • Videotex Systems and Services
    NTIA-Report-80-50 VI DEOTEX Systems and Services L.R. Bloom A.G. Hanson R. F. Li nfield D.R. Wortendyke u.s. DEPARTMENT OF COMMERCE Philip M. Klutznick, Secretary Henry Geller, Assistant Secretary for Communications and Information October 1980 PREFACE This report describes a number of new non-speech telecommunication services soon to be offered to the American public. Videotex is the generic term for systems that transmit text and graphics to the business or home viewer by means of signals carried over a telephone line, cable, or any of the TV or radio broad­ cast channels. A television receiver equipped with the necessary decoding and memory circuit provides the home user with access to hundreds of "pages" of selected information for viewing by the customer for one-way non-interactive systems. In the broadcast modes of operation, the customer may select by "book and page ll from a large selection of subjects being broadcast at some specific time. Interactive Videotex systems allow the subscriber to interrogate a data center by telephone and to select, from hundreds of thousands of stored pages, that information of particular interest to the user. The report in its present form contains a brief discussion concerning individ­ ual types of services, but primary emphasis is upon the need for a highly critical evaluation of a whole group of technological building blocks which already exist. We already have all the pieces provided for user-oriented national or international computer-based communications and information networks. The terminals are as close to our office or home as are the ubiquitous telephones, and as viewable as the (almost) standard home television receivers.
    [Show full text]