1. 2. 3. Ab 4. 5. 6. 7. 8. 9

Total Page:16

File Type:pdf, Size:1020Kb

1. 2. 3. Ab 4. 5. 6. 7. 8. 9 History of Mathematics MATH 629—100 Homework -Helenistic Period Texas A&M University 1. In what sense can one consider Archimedes to be the inventor of calculus? Be sure to clarify what you mean by the term “inventor”. Use the lecture notes and the text as your sources. 2. Prove the Archimedes result that the area of a section of a parabola equals 4 times the area of the inscribed 3 triangle of the same height. (You may use calculus here.) n 3. With respect to a circle of radius r,Further,letb1, b2,…,bn denote the regular inscribed 6 ⋅ 1…6 ⋅ 2 … polygons, similarly, B1, B2 Bn for the circumscribed polygons. Prove the following formulae give the n relations between the perimeters (pn and Pn and areas (an and An of these 6 ⋅ 2 polygons. 2pnPn a. Pn+1 = pn+1 = pnPn+1 pn + Pn 2an+1An b. an+1 = anAn An+1 = an+1 + An 4. Of the many innovations in Euclid, which one or two do you find are the most innovative? π α sinβ 5. Prove Aristarchus’ theorem that if 0 < α < β < , then sin > . (You may use any 2 α β mathematical techniques you know. Calculus helps. Can you prove it using only geometrical methods?) π α α 6. A result known to and used by Aristarchus is that if 0 < α < , then sin decreases and tan 2 α α increases. Show these propositions. 7. Using induction, prove that 1 = 1 3 + 5 = 23 7 + 9 + 11 = 33 13 + 15 + 17 + 19 = 43 and so on. 8. Using the parabola, show how to find 3 2 . (Hint. You will need two parabolas with orthogonal axes.) Can you generalize to find the cube root of any number? 9. Prove a generalization of the Pythagorean theorem ála Pappus using triangles instead of paralellograms. [You need to get the correct statement first. This will come by mimicing the Pappus proof for triangles.] 10. Prove that the Pappus generalization of the Pythagorean Theorem yields the Pythagorean Theorem in the case of a right triangle △ABC. That is the “parallelogram” constructed in the Pappus proof is indeed a square upon the hypotenuse. (Hint. Here’s an approach. Show KM ⊥ BC BD ⊥ BC and then |BD| = |BC|.To do this, discover an importance congruence. ) K D E A C B M 11. Give a proof of the Zenodorus theorem that if a circle and regular polygon have the same perimeter, the circle has the greater area. (Hint. One part of the above problem helps.) 12. Find two numbers in mean proportion between a and b. 13. Find two numbers in mean proportion between 5 and 9. 14. A sequence an is in arithmetic progression if an+1 − an = d, is constant for all n.Ifd > 0, the sequence is increasing, and if d < 0, the sequence is decreasing. Show than if a given arithmetic sequence is decreasing then 2 a1 + a2 + ⋯ + an − an+1 + an+2 + ⋯ + a2n = −n d (Hypsicles, 2nd century BCE) 15. Apply the Heron method to approximate the cube root of 45. How accurate is the approximation? 16. Apply the Heron method to approximate the cube root of 1450. How accurate is the approximation? 17. Show that the solution to any cubic equation can be determined by intersecting a hyperbola with a parabola. 18. Prove that any two triangles inscribed in a circle having the same base have the same vertex. (This is Proposition III -21 of Euclid. See the diagram below.) Vertices of the inscribed triangles D C B A Show that ACB = BDA 19. From the previous problem prove the conclusion that the maximum angle subtended from a point on a line to a segment of a line must occur at the point where a circle passing through the endpoints of the segment is tangent to the line. Line segment Subtended angle Φ Point Optimal point Line.
Recommended publications
  • Applying the Polygon Angle
    POLYGONS 8.1.1 – 8.1.5 After studying triangles and quadrilaterals, students now extend their study to all polygons. A polygon is a closed, two-dimensional figure made of three or more non- intersecting straight line segments connected end-to-end. Using the fact that the sum of the measures of the angles in a triangle is 180°, students learn a method to determine the sum of the measures of the interior angles of any polygon. Next they explore the sum of the measures of the exterior angles of a polygon. Finally they use the information about the angles of polygons along with their Triangle Toolkits to find the areas of regular polygons. See the Math Notes boxes in Lessons 8.1.1, 8.1.5, and 8.3.1. Example 1 4x + 7 3x + 1 x + 1 The figure at right is a hexagon. What is the sum of the measures of the interior angles of a hexagon? Explain how you know. Then write an equation and solve for x. 2x 3x – 5 5x – 4 One way to find the sum of the interior angles of the 9 hexagon is to divide the figure into triangles. There are 11 several different ways to do this, but keep in mind that we 8 are trying to add the interior angles at the vertices. One 6 12 way to divide the hexagon into triangles is to draw in all of 10 the diagonals from a single vertex, as shown at right. 7 Doing this forms four triangles, each with angle measures 5 4 3 1 summing to 180°.
    [Show full text]
  • Squaring the Circle a Case Study in the History of Mathematics the Problem
    Squaring the Circle A Case Study in the History of Mathematics The Problem Using only a compass and straightedge, construct for any given circle, a square with the same area as the circle. The general problem of constructing a square with the same area as a given figure is known as the Quadrature of that figure. So, we seek a quadrature of the circle. The Answer It has been known since 1822 that the quadrature of a circle with straightedge and compass is impossible. Notes: First of all we are not saying that a square of equal area does not exist. If the circle has area A, then a square with side √A clearly has the same area. Secondly, we are not saying that a quadrature of a circle is impossible, since it is possible, but not under the restriction of using only a straightedge and compass. Precursors It has been written, in many places, that the quadrature problem appears in one of the earliest extant mathematical sources, the Rhind Papyrus (~ 1650 B.C.). This is not really an accurate statement. If one means by the “quadrature of the circle” simply a quadrature by any means, then one is just asking for the determination of the area of a circle. This problem does appear in the Rhind Papyrus, but I consider it as just a precursor to the construction problem we are examining. The Rhind Papyrus The papyrus was found in Thebes (Luxor) in the ruins of a small building near the Ramesseum.1 It was purchased in 1858 in Egypt by the Scottish Egyptologist A.
    [Show full text]
  • Interior and Exterior Angles of Polygons 2A
    Regents Exam Questions Name: ________________________ G.CO.C.11: Interior and Exterior Angles of Polygons 2a www.jmap.org G.CO.C.11: Interior and Exterior Angles of Polygons 2a 1 Which type of figure is shown in the accompanying 5 In the diagram below of regular pentagon ABCDE, diagram? EB is drawn. 1) hexagon 2) octagon 3) pentagon 4) quadrilateral What is the measure of ∠AEB? 2 What is the measure of each interior angle of a 1) 36º regular hexagon? 2) 54º 1) 60° 3) 72º 2) 120° 4) 108º 3) 135° 4) 270° 6 What is the measure, in degrees, of each exterior angle of a regular hexagon? 3 Determine, in degrees, the measure of each interior 1) 45 angle of a regular octagon. 2) 60 3) 120 4) 135 4 Determine and state the measure, in degrees, of an interior angle of a regular decagon. 7 A stop sign in the shape of a regular octagon is resting on a brick wall, as shown in the accompanying diagram. What is the measure of angle x? 1) 45° 2) 60° 3) 120° 4) 135° 1 Regents Exam Questions Name: ________________________ G.CO.C.11: Interior and Exterior Angles of Polygons 2a www.jmap.org 8 One piece of the birdhouse that Natalie is building 12 The measure of an interior angle of a regular is shaped like a regular pentagon, as shown in the polygon is 120°. How many sides does the polygon accompanying diagram. have? 1) 5 2) 6 3) 3 4) 4 13 Melissa is walking around the outside of a building that is in the shape of a regular polygon.
    [Show full text]
  • The Construction, by Euclid, of the Regular Pentagon
    THE CONSTRUCTION, BY EUCLID, OF THE REGULAR PENTAGON Jo˜ao Bosco Pitombeira de CARVALHO Instituto de Matem´atica, Universidade Federal do Rio de Janeiro, Cidade Universit´aria, Ilha do Fund˜ao, Rio de Janeiro, Brazil. e-mail: [email protected] ABSTRACT We present a modern account of Ptolemy’s construction of the regular pentagon, as found in a well-known book on the history of ancient mathematics (Aaboe [1]), and discuss how anachronistic it is from a historical point of view. We then carefully present Euclid’s original construction of the regular pentagon, which shows the power of the method of equivalence of areas. We also propose how to use the ideas of this paper in several contexts. Key-words: Regular pentagon, regular constructible polygons, history of Greek mathe- matics, equivalence of areas in Greek mathematics. 1 Introduction This paper presents Euclid’s construction of the regular pentagon, a highlight of the Elements, comparing it with the widely known construction of Ptolemy, as presented by Aaboe [1]. This gives rise to a discussion on how to view Greek mathematics and shows the care on must have when adopting adapting ancient mathematics to modern styles of presentation, in order to preserve not only content but the very way ancient mathematicians thought and viewed mathematics. 1 The material here presented can be used for several purposes. First of all, in courses for prospective teachers interested in using historical sources in their classrooms. In several places, for example Brazil, the history of mathematics is becoming commonplace in the curricula of courses for prospective teachers, and so one needs materials that will awaken awareness of the need to approach ancient mathematics as much as possible in its own terms, and not in some pasteurized downgraded versions.
    [Show full text]
  • Geometrygeometry
    Park Forest Math Team Meet #3 GeometryGeometry Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number Theory: Divisibility rules, factors, primes, composites 4. Arithmetic: Order of operations; mean, median, mode; rounding; statistics 5. Algebra: Simplifying and evaluating expressions; solving equations with 1 unknown including identities Important Information you need to know about GEOMETRY… Properties of Polygons, Pythagorean Theorem Formulas for Polygons where n means the number of sides: • Exterior Angle Measurement of a Regular Polygon: 360÷n • Sum of Interior Angles: 180(n – 2) • Interior Angle Measurement of a regular polygon: • An interior angle and an exterior angle of a regular polygon always add up to 180° Interior angle Exterior angle Diagonals of a Polygon where n stands for the number of vertices (which is equal to the number of sides): • • A diagonal is a segment that connects one vertex of a polygon to another vertex that is not directly next to it. The dashed lines represent some of the diagonals of this pentagon. Pythagorean Theorem • a2 + b2 = c2 • a and b are the legs of the triangle and c is the hypotenuse (the side opposite the right angle) c a b • Common Right triangles are ones with sides 3, 4, 5, with sides 5, 12, 13, with sides 7, 24, 25, and multiples thereof—Memorize these! Category 2 50th anniversary edition Geometry 26 Y Meet #3 - January, 2014 W 1) How many cm long is segment 6 XY ? All measurements are in centimeters (cm).
    [Show full text]
  • The Method of Exhaustion
    The method of exhaustion The method of exhaustion is a technique that the classical Greek mathematicians used to prove results that would now be dealt with by means of limits. It amounts to an early form of integral calculus. Almost all of Book XII of Euclid’s Elements is concerned with this technique, among other things to the area of circles, the volumes of tetrahedra, and the areas of spheres. I will look at the areas of circles, but start with Archimedes instead of Euclid. 1. Archimedes’ formula for the area of a circle We say that the area of a circle of radius r is πr2, but as I have said the Greeks didn’t have available to them the concept of a real number other than fractions, so this is not the way they would say it. Instead, almost all statements about area in Euclid, for example, is to say that one area is equal to another. For example, Euclid says that the area of two parallelograms of equal height and base is the same, rather than say that area is equal to the product of base and height. The way Archimedes formulated his Proposition about the area of a circle is that it is equal to the area of a triangle whose height is equal to it radius and whose base is equal to its circumference: (1/2)(r · 2πr) = πr2. There is something subtle here—this is essentially the first reference in Greek mathematics to the length of a curve, as opposed to the length of a polygon.
    [Show full text]
  • Tilings Page 1
    Survey of Math: Chapter 20: Tilings Page 1 Tilings A tiling is a covering of the entire plane with ¯gures which do not not overlap, and leave no gaps. Tilings are also called tesselations, so you will see that word often. The plane is in two dimensions, and that is where we will focus our examination, but you can also tile in one dimension (over a line), in three dimensions (over a space) and mathematically, in even higher dimensions! How cool is that? Monohedral tilings use only one size and shape of tile. Regular Polygons A regular polygon is a ¯gure whose sides are all the same length and interior angles are all the same. n 3 n 4 n 5 n 6 n 7 n 8 n 9 Equilateral Triangle, Square, Pentagon, Hexagon, n-gon for a regular polygon with n sides. Not all of these regular polygons can tile the plane. The regular polygons which do tile the plane create a regular tiling, and if the edge of a tile coincides entirely with the edge of a bordering tile, it is called an edge-to-edge tiling. Triangles have an edge to edge tiling: Squares have an edge to edge tiling: Pentagons don't have an edge to edge tiling: Survey of Math: Chapter 20: Tilings Page 2 Hexagons have an edge to edge tiling: The other n-gons do not have an edge to edge tiling. The problem with the ones that don't (pentagon and n > 6) has to do with the angles in the n-gon.
    [Show full text]
  • Angles of Polygons
    5.3 Angles of Polygons How can you fi nd a formula for the sum of STATES the angle measures of any polygon? STANDARDS MA.8.G.2.3 1 ACTIVITY: The Sum of the Angle Measures of a Polygon Work with a partner. Find the sum of the angle measures of each polygon with n sides. a. Sample: Quadrilateral: n = 4 A Draw a line that divides the quadrilateral into two triangles. B Because the sum of the angle F measures of each triangle is 180°, the sum of the angle measures of the quadrilateral is 360°. C D E (A + B + C ) + (D + E + F ) = 180° + 180° = 360° b. Pentagon: n = 5 c. Hexagon: n = 6 d. Heptagon: n = 7 e. Octagon: n = 8 196 Chapter 5 Angles and Similarity 2 ACTIVITY: The Sum of the Angle Measures of a Polygon Work with a partner. a. Use the table to organize your results from Activity 1. Sides, n 345678 Angle Sum, S b. Plot the points in the table in a S coordinate plane. 1080 900 c. Write a linear equation that relates S to n. 720 d. What is the domain of the function? 540 Explain your reasoning. 360 180 e. Use the function to fi nd the sum of 1 2 3 4 5 6 7 8 n the angle measures of a polygon −180 with 10 sides. −360 3 ACTIVITY: The Sum of the Angle Measures of a Polygon Work with a partner. A polygon is convex if the line segment connecting any two vertices lies entirely inside Convex the polygon.
    [Show full text]
  • Pappus of Alexandria: Book 4 of the Collection
    Pappus of Alexandria: Book 4 of the Collection For other titles published in this series, go to http://www.springer.com/series/4142 Sources and Studies in the History of Mathematics and Physical Sciences Managing Editor J.Z. Buchwald Associate Editors J.L. Berggren and J. Lützen Advisory Board C. Fraser, T. Sauer, A. Shapiro Pappus of Alexandria: Book 4 of the Collection Edited With Translation and Commentary by Heike Sefrin-Weis Heike Sefrin-Weis Department of Philosophy University of South Carolina Columbia SC USA [email protected] Sources Managing Editor: Jed Z. Buchwald California Institute of Technology Division of the Humanities and Social Sciences MC 101–40 Pasadena, CA 91125 USA Associate Editors: J.L. Berggren Jesper Lützen Simon Fraser University University of Copenhagen Department of Mathematics Institute of Mathematics University Drive 8888 Universitetsparken 5 V5A 1S6 Burnaby, BC 2100 Koebenhaven Canada Denmark ISBN 978-1-84996-004-5 e-ISBN 978-1-84996-005-2 DOI 10.1007/978-1-84996-005-2 Springer London Dordrecht Heidelberg New York British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2009942260 Mathematics Classification Number (2010) 00A05, 00A30, 03A05, 01A05, 01A20, 01A85, 03-03, 51-03 and 97-03 © Springer-Verlag London Limited 2010 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency.
    [Show full text]
  • Euclidean Geometry Trent University, Winter 2021 Solutions to Assignment #3 a Centre for a Regular N-Gon Due on Friday, 5 February
    Mathematics 2260H { Geometry I: Euclidean Geometry Trent University, Winter 2021 Solutions to Assignment #3 A centre for a regular n-gon Due on Friday, 5 February. Recall that a regular polygon is one with all sides of equal length and all internal angles equal. A polygon with n sides is often referred to as an n-gon.∗ In what follows, suppose A1A2 :::An is a regular n-gon in the Euclidean plane for some n ≥ 3. 1. Let `1, `2, ::: , and `n be the lines bisecting (i.e. cutting in half) the interior angles at A1, A2, ::: , and An, respectively, of the regular n-gon A1A2 :::An. Show that `1, `2, ::: , and `n are concurrent, that is meet at a common point O. [4] Solution. Here is diagram of the case n = 8: We will not only show that the angle bisectors are all concurrent at a point O, but that this point is equidistant from all the vertices of the polygon. The latter fact will help with questions 2 and 3. Since A1A2 :::An is a regular n-gon, each internal angle must be less than a straight angle. It follows that the bisectors of the equal internal angles at A1 and A2, namely `1 and `2, make with A1A2 are equal to each other and each is less than half a straight angle, i.e. each is less than a right angle. Thus A1A2 is a line falling across the lines `1 and `2, ∗ For small n we have common names: triangle, quadrilateral, pentagon, and so on. Note that in the Euclidean and hyperbolic planes an n-gon with positive area must have n ≥ 3, but in the elliptic plane there are 2-gons (\biangles"?) with positive area.
    [Show full text]
  • Areas of Regular Polygons Finding the Area of an Equilateral Triangle
    Areas of Regular Polygons Finding the area of an equilateral triangle The area of any triangle with base length b and height h is given by A = ½bh The following formula for equilateral triangles; however, uses ONLY the side length. Area of an equilateral triangle • The area of an equilateral triangle is one fourth the square of the length of the side times 3 s s A = ¼ s2 s A = ¼ s2 Finding the area of an Equilateral Triangle • Find the area of an equilateral triangle with 8 inch sides. Finding the area of an Equilateral Triangle • Find the area of an equilateral triangle with 8 inch sides. 2 A = ¼ s Area3 of an equilateral Triangle A = ¼ 82 Substitute values. A = ¼ • 64 Simplify. A = • 16 Multiply ¼ times 64. A = 16 Simplify. Using a calculator, the area is about 27.7 square inches. • The apothem is the F height of a triangle A between the center and two consecutive vertices H of the polygon. a E G B • As in the activity, you can find the area o any regular n-gon by dividing D C the polygon into congruent triangles. Hexagon ABCDEF with center G, radius GA, and apothem GH A = Area of 1 triangle • # of triangles F A = ( ½ • apothem • side length s) • # H of sides a G B = ½ • apothem • # of sides • side length s E = ½ • apothem • perimeter of a D C polygon Hexagon ABCDEF with center G, This approach can be used to find radius GA, and the area of any regular polygon. apothem GH Theorem: Area of a Regular Polygon • The area of a regular n-gon with side lengths (s) is half the product of the apothem (a) and the perimeter (P), so The number of congruent triangles formed will be A = ½ aP, or A = ½ a • ns.
    [Show full text]
  • Figurate Numbers: Presentation of a Book
    Overview Chapter 1. Plane figurate numbers Chapter 2. Space figurate numbers Chapter 3. Multidimensional figurate numbers Chapter Figurate Numbers: presentation of a book Elena DEZA and Michel DEZA Moscow State Pegagogical University, and Ecole Normale Superieure, Paris October 2011, Fields Institute Overview Chapter 1. Plane figurate numbers Chapter 2. Space figurate numbers Chapter 3. Multidimensional figurate numbers Chapter Overview 1 Overview 2 Chapter 1. Plane figurate numbers 3 Chapter 2. Space figurate numbers 4 Chapter 3. Multidimensional figurate numbers 5 Chapter 4. Areas of Number Theory including figurate numbers 6 Chapter 5. Fermat’s polygonal number theorem 7 Chapter 6. Zoo of figurate-related numbers 8 Chapter 7. Exercises 9 Index Overview Chapter 1. Plane figurate numbers Chapter 2. Space figurate numbers Chapter 3. Multidimensional figurate numbers Chapter 0. Overview Overview Chapter 1. Plane figurate numbers Chapter 2. Space figurate numbers Chapter 3. Multidimensional figurate numbers Chapter Overview Chapter 1. Plane figurate numbers Chapter 2. Space figurate numbers Chapter 3. Multidimensional figurate numbers Chapter Overview Figurate numbers, as well as a majority of classes of special numbers, have long and rich history. They were introduced in Pythagorean school (VI -th century BC) as an attempt to connect Geometry and Arithmetic. Pythagoreans, following their credo ”all is number“, considered any positive integer as a set of points on the plane. Overview Chapter 1. Plane figurate numbers Chapter 2. Space figurate numbers Chapter 3. Multidimensional figurate numbers Chapter Overview In general, a figurate number is a number that can be represented by regular and discrete geometric pattern of equally spaced points. It may be, say, a polygonal, polyhedral or polytopic number if the arrangement form a regular polygon, a regular polyhedron or a reqular polytope, respectively.
    [Show full text]